P(X) = x^4-2x^3+3x^2-ax+3a-7
When divided by (X+1), leaves the remainder 19, find the value of a. Also, find the remainder, when p(X) is divided by (X+2).
Anonymous:
hiiii
Answers
Answered by
3
Answer:
x^4-2x^3+3x^2-ax+3a-7
put x+1=0
x=-1
p(x)=4(-1)^4-2(-1)^3+3(-1)^2-a(-1)+3a-7=19
4+2+3+a+3a-7=19
6+4a-7=19
-1+4a=19
4a=20
a=5
p(x)=x^4-2x^3+3x^2-ax+3a-7
put x+2=0
×=-2
p(-2)=(-2)^4-2(-2)^3+3(-2)^2-5(-2)+3(5)-7=0
16+16+12+10+15-7=0
69-7=0
62
Answered by
2
Step-by-step explanation:
p(-1)=(-1)⁴-2(-1)³+3(-1)²-a(-1)+3(a)-7
19 =1+2+3+a+3a-7
19=6-2a-7
19=4a-1
20=4a
a=20/4
a=5
p(x)=x⁴-2x³+3x²-5x+8
p(-2)=(-2)⁴-2(-2)³+3(-2)²-5(-2)+8
=16+16+12+10+8
=62
HOPE IT HELPS TO YOU
PLEASE MARK ME AS BRAINLEAST
Similar questions