Math, asked by jsamim786, 4 months ago

p(x)=x^x, then the value of f'(x)​

Answers

Answered by mathdude500
2

The correct Statement is

 \rm \: If  \: f(x) =  {x}^{x}  \: then \: the \: value \: of \: f'(x)

Formula Used :-

(1). \:  \boxed{ \blue{ \:  \rm :  \implies \:\dfrac{d}{dx} x = 1}}

(2). \: \boxed{ \blue{ \:  \rm :  \implies \: \:  \dfrac{d}{dx}  log(x) = \dfrac{1}{x}  }}

(3). \: \boxed{ \blue{ \:  \rm :  \implies \dfrac{d}{dx} u.v \:  = u \:  \dfrac{d}{dx} v \:  +  \: v \:  \dfrac{d}{dx} u}}

\large\underline\purple{\bold{Solution :-  }}

Given

 \rm :  \implies \:f(x) \:  =  \:  {x}^{x}

On taking log on both sides, we get

 \rm :  \implies \:log \: f(x) \:  =  \: log( {x}^{x} )

 \rm :  \implies \:log \: f(x) = x \: logx

On differentiating both sides w. r. t. x, we get

 \rm :  \implies \: \dfrac{d}{dx} log \: f(x) =  \dfrac{d}{dx} (x \: logx)

 \rm :  \implies \:\dfrac{1}{f(x)}  \dfrac{d}{dx} f(x) \:  =  \: x \dfrac{d}{dx} logx \:  +  \: logx \:  \dfrac{d}{dx} x

 \rm :  \implies \:\dfrac{f'(x)}{f(x)}  \:  =  \: x \times \dfrac{1}{x}  + logx \:  \times 1

 \rm :  \implies \:f'(x) \:  =  \: f(x) \: (1 + logx)

 \boxed{ \pink{ \:  \rm :  \implies \:f'(x) \:  =  \:  {x}^{x}  \: (1 + logx)}}

Similar questions