p=x÷x+y, q=y÷x+y, then find 1÷p-q- 2q÷p2-q2
Answers
Answer:
1
Step-by-step explanation:
p = x/(x+y)
q = y/(x+y)
To find
1/(p-q) - 2q/(p²-q²)
=1/(p-q) - 2q/{(p+q)(p-q)}
=(1/(p+q)(p-q))(p + q - 2q)
= (1/((p-q)(p+q))(p - q)
= 1/p+q
p + q = x/(x+y) + y/(x+y)
=(x+y)/(x+y)
= 1
1/(p-q) - 2q/(p²-q²) = 1/1
=> 1/(p-q) - 2q/(p²-q²) = 1
Answer:
The solution of the expression 1÷p-q- 2q÷p²-q² is 1.
Step-by-step explanation:
Given :
- p = x/ (x+y)
- q = y/ (x+y)
Here, p-q = x/(x+y) - y/(x+y)
= (x-y)/(x+y)
p²-q² = (p+q)(p-q)
= [(x+y)/(x+y)][(x-y)/(x+y)]
p+q = x/(x+y) + y/(x+y)
= (x+y)/(x+y)
= 1
Therefore, simplifying the given expression
(1/p-q) - (2q/p²-q²) = (p+q-2q)/p²-q²
= (p-q)/(p+q)(p-q)
= 1/p+q
= 1
#SPJ2