Math, asked by dograrishita3, 2 months ago

P(x)= x³+ ax²+ bx+ c be a polynomial such that P(1)=1, P(2)=2, P(3)=3, then find the value of P(4).​

Answers

Answered by mathdude500
2

Given that

\rm :\longmapsto\:P(x) = {x}^{3}  +   {ax}^{2}  + bx + c -  -  -  - (1)

Now,

\rm :\longmapsto\:P(1) = 1

\rm :\longmapsto\: {(1)}^{3} + a {(1)}^{2} + b(1) + c = 1

\rm :\longmapsto\:1 + a + b + c = 1

\bf\implies \:a + b + c = 0 -  -  - (2)

Again,

\rm :\longmapsto\:P(2) = 2

\rm :\longmapsto\: {(2)}^{3} + a {(2)}^{2} + b(2) + c = 2

\rm :\longmapsto\:8 + 4a + 2b + c = 2

\bf\implies \:4a + 2b + c =  - 6 -  -  - (3)

Also,

\rm :\longmapsto\:P(3) = 3

\rm :\longmapsto\: {(3)}^{3} + a {(3)}^{2} + b(3) + c = 3

\rm :\longmapsto\:27 + 9a + 3b + c = 3

\rm :\longmapsto\:9a + 3b + c =  - 24 -  -  - (4)

On Subtracting equation (2) from equation (3), we get

\rm :\longmapsto\:3a + b =  - 6 -  -  - (5)

On Subtracting equation (3) from equation (4), we get

\rm :\longmapsto\:5a + b =  - 18 -  -  -  - (6)

Now,

On Subtracting equation (5) from equation (6), we get

\rm :\longmapsto\:2a =  - 12

\bf\implies \:a =  - 6 -  -  - (7)

Put a = - 6 in equation (6), we get

\rm :\longmapsto\:5( - 6) + b =  - 18

\rm :\longmapsto\: - 30 + b =  - 18

\bf\implies \:b = 12 -  -  - (8)

Substituting the value of a and b in equation (2), we get

\rm :\longmapsto\: - 6 + 12 + c = 0

\rm :\longmapsto\: 6+ c = 0

\bf\implies \:c \:  =  \:  -  \: 6

So,

On substituting the values of a, b and c in equation (1), we get

\rm :\longmapsto\:P(x) =  {x}^{3}  - 6 {x}^{2} + 12x - 6

So,

\rm :\longmapsto\:P(4) =  {(4)}^{3}  - 6 {(4)}^{2} + 12 \times 4- 6

\rm :\longmapsto\:P(4) =  64  - 96 + 48 - 6

\rm :\longmapsto\:P(4) = 10

Similar questions