P(x)=x⁴-3x²+4x+5,g(x)=x²+1-x
Answers
Step-by-step explanation:
Question :____&&&&_______
P(x)=x⁴-3x²+4x+5;g(x)=x²+1-x
Related Answer
<br> `p(x)=2x^(3)+4x+6,g(x)=x+1` <br> (ii) `p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1` <br> (iii) `p(x)=x^(3)-3x^(2)+4x-4,g(x)=x-2` <br> (iv) `p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2` <br> (v) `p(x)=4x^(3)-3x^(2)+2x-4,g(x)=x-1`. <br> (vi) `p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3`
find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3
play
Using the division algorithm, find the quotient and remainder when p (x) is divided by g (x) in the following: (i) p(x) =x^(3)-3x^(2)+5x-3,g(x) =x^(2)-2 (ii) p(x) =x^(4) -3x^(2)+4x+5,g(x)=x^(2)+1-x (iii) p(x) =x^(4) - 5x+6,g(x) =2-x^(2)
play
Use the Factor Theorem to determine
whether g(x) is a factor of p(x) in each of the
following cases:
(i) p(x)=2x^3+x^2-2x-1,g(x)=x+1
(ii)
p(x)=x^3+3x^2+3x+1,g(x)=x+2
(iii) p(x)=x^3+4x^2+x+6,g(x)=x-3
play
By applying the factorization theorem, state whether g (x) is a factor of p (x) in each of the following situations: (i) p(x)=2x^(3)+x^(2)-2x-1, g(x)=x+1 (Ii) p(x)=x^(3)+3x^(2)+3x+1, g(x)=x+2 (iii) p(x)=x^(3) -4x^(2)+x+6, g(x)=x-3
play
Divide the polynomial p(x)=x^(4)-3x^(2)+4x+5 by the polynomial g(x)=x^(2)-x+1 and find quotient and remainder.
play
If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2, then divide p(x) by g(x) and find quotient q(x) and remainder r(x).
play
Using the division algorithm, find the quotient and the remainder when P (x) is divided by g (x) in the following: (i) p(x) =x^(2) -3x^(2)+5x-3, g(x) =x^(2)-2 (ii) p(x) =x^(4) -3x^(2)+4x+5 , g(x) =x^(2) +1-x (iii) p(x) =x^(4) -5x +6.
play
check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1