Math, asked by aakashlohar33, 4 months ago

p (y) = 3 then the value of the polynomial ay³ - y² + 2y - 5 is 1 then find the value of 'a'.*

1️⃣ 3
2️⃣ -3
3️⃣ 1/3
4️⃣ -1/​

Answers

Answered by Auяoяà
17

⛦ Given :

  • p(y) = 3

⛦ To find :

  • The value of a in ay³ - y² + 2y - 5 = 1

⛦ Solution :

•Expression :

ay³ - y² + 2y - 5 = 1

Now,

Putting the value of y.

⇝ a(3)³ - (3)² + 2(3) - 5 = 1

⇝ a × 27 - 9 + 6 - 5 = 1

⇝ 27a - 3 - 5 = 1

⇝ 27a - 8 = 1

⇝ 27a = 1 + 8

⇝ 27a = 9

⇝ a = 9/27

⇝ a = 1/3

Therefore, the correct option is:

Option 3.{\sf{=}{\pink{\dfrac{1}{3}}}}

--------------------------

Let's verify the number.

Given expression :

ay³ - y² + 2y - 5 = 1

Now, putting the values of 'y' and 'a'.

\mapsto\sf\dfrac{1}{3}\times{(3)^3}-(3)^2+2(3)-5=1

\mapsto\sf\dfrac{1}{\cancel{3}^1}\times{\cancel{27}^9-9+6-5=1}

\mapsto\sf{\cancel{9-9}+6-5=1}

\mapsto\sf{6-5=1}

\mapsto\sf{1=1}

Thus, L.H.S. = R.H.S.

Hence, answer is correct.

Answered by yadavdupanshu
0

Answer:

3 options are correct 1/3

Similar questions