Math, asked by akbossyt69, 3 months ago

p² + 10p + 25 - 16q² resolve into factors​

Answers

Answered by JuanitaJ
3

Answer:

a) (a² + 4ab - b²) and (-5a² + ab - 3b²)

⇒ (a² + 4ab - b²) + (-5a² + ab - 3b²)

⇒ a² + 4ab - b² - 5a² + ab - 3b²

⇒ -4a² + 5ab - 4b²

b) (6y²z- 5y² + 12) and ( 4y²z - 3yz -9)

⇒ (6y²z - 5y² + 12) + (4y²z - 3yz -9)

⇒ 6y²z - 5y² + 12 + 4y²z - 3yz - 9

⇒ 10y²z + 5y² - 3yz + 3

c) (x³ - 4x² + 1/2x + 5), ( 2/3x² - 1/3x + 4/5) and ( -1/3x² + x + 5/2)

⇒ (x³ - 4x² + 1/2x + 5) + (2/3x² - 1/3x + 4/5) + ( -1/3x² + x + 5/2)

⇒ (x³ - 4x² + 1/2x + 5 + 2/3x² - 1/3x + 4/5 - 1/3x² + x + 5/2)

⇒ x³ + (-4 + 2/3 - 1/3)x² + (1/2 - 1/3 + 1)x + (5 + 4/5 + 5/2)

⇒ x³ - 11/3x² + 63/10

Answered by Anonymous
7

Step-by-step explanation:

 \rm \: p² + 10p + 25

 \rm \: p²  + 5p + 5p + 25

 \rm \: p(p + 5) + 5(p + 5)

 \rm \: (p + 5)(p + 5)

Answered by Anonymous
5

Step-by-step explanation:

 \rm \: p² + 10p + 25

 \rm \: p²  + 5p + 5p + 25

 \rm \: p(p + 5) + 5(p + 5)

 \rm \: (p + 5)(p + 5)

Similar questions