p²+2pycotx=y²(p=dy/dx)
Answers
Answer:
Here's your answer..........
Step-by-step explanation:
2 + 2py cotx = y2.
(y')^2+2y'ycotx-y^2=0(y
′
)
2
+2y
′
ycotx−y
2
=0
((y')^2+2y'ycotx-y^2)/y^2=0((y
′
)
2
+2y
′
ycotx−y
2
)/y
2
=0
(y'/y)^2+2y'cotx/y-1=0(y
′
/y)
2
+2y
′
cotx/y−1=0
z=y'/yz=y
′
/y
z^2+2zcotx-1=0z
2
+2zcotx−1=0
D=(2cotx)^2+4=4(1+(cotx)^2)=4/(sinx)^2D=(2cotx)
2
+4=4(1+(cotx)
2
)=4/(sinx)
2
So we have two cases.
1)
z=(-2cotx+\sqrt{4/(sinx)^2})/2=(1-cosx)/sinxz=(−2cotx+
4/(sinx)
2
)/2=(1−cosx)/sinx
y'/y=(1-cosx)/sinxy
′
/y=(1−cosx)/sinx
dy/y=(1-cosx)dx/sinxdy/y=(1−cosx)dx/sinx
\intop dy/y=\intop (1-cosx)dx/sinx∫dy/y=∫(1−cosx)dx/sinx
lny=\intop (1-cosx)dx/sinxlny=∫(1−cosx)dx/sinx
\intop (1-cosx)dx/sinx=-\intop (1-cosx)d(cosx)/(sinx)^2=∫(1−cosx)dx/sinx=−∫(1−cosx)d(cosx)/(sinx)
2
=
=-\intop (1-cosx)d(cosx)/(1-(cosx)^2)=-\intop d(cosx)/(1+cosx)==−∫(1−cosx)d(cosx)/(1−(cosx)
2
)=−∫d(cosx)/(1+cosx)=
=-ln(1+cosx)+C=−ln(1+cosx)+C
So we get:
lny=-ln(1+cosx)+C=ln(1/(1+cosx))+Clny=−ln(1+cosx)+C=ln(1/(1+cosx))+C
y(x)=c/(1+cosx)y(x)=c/(1+cosx)
2)
z=(-2cotx-\sqrt{4/(sinx)^2})/2=-(1+cosx)/sinxz=(−2cotx−
4/(sinx)
2
)/2=−(1+cosx)/sinx
lny=-\intop (1+cosx)dx/sinx=-ln(1-cosx)+Clny=−∫(1+cosx)dx/sinx=−ln(1−cosx)+C
lny=ln(1/(1-cosx)+Clny=ln(1/(1−cosx)+C
y(x)=c/(1-cosx)y(x)=c/(1−cosx)