Math, asked by wwsiddheshdorugadeco, 3 months ago

*p² / 4 + p / 3 + 1/9 is an expansion of which binomial?*

1️⃣ (p/2 + 1/3)²
2️⃣ (p/2 - 1/3)²
3️⃣ (p/4 + 1/9)²
4️⃣ none of the above

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}

\textbf{To simplify:}

\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}

\textsf{This can be written as}

\mathsf{=\left(\dfrac{p}{2}\right)^2+\dfrac{p}{3}+\left(\dfrac{1}{3}\right)^2}

\mathsf{=\left(\dfrac{p}{2}\right)^2+2{\times}\dfrac{p}{2}{\times}\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2}

\mathsf{Using\;the\;identity,}

\boxed{\mathsf{(a+b)^2=a^2+2ab+b^2}}

\mathsf{=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}

\implies\boxed{\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}}

\textbf{Answer:}

\mathsf{Option\;(1)\;is\;correct}

Similar questions