Math, asked by safikazi999, 1 year ago

p²-7P-18 polynomial elements​

Answers

Answered by rudragupta810
1

Answer:

p^2. - 7p -18

p^2. -9p + 2p - 18

p(p-9) +2(p-9)

(p+2)(p-9)

p=9,-2

Answered by charliejaguars2002
6

Answer:

\Large\boxed{(p+2)(p-9)}

Step-by-step explanation:

GIVEN:

p²-7p-18 (by using with foil method formula and exponent rule.)

SOLUTIONS:

\mathsf{FOIL \quad METHOD \quad FORMULA}

\displaystyle \mathsf{(A+B)(C+D)=AC+AD+BC+BD}

A=P

B=2

C=P

D=(-9)

\Rightarrow \displaystyle \mathsf{PP+P(-9)+2P+2(-9)}}

Change positive sign to negative sign.

\displaystyle \mathsf{+(-Y)=-Y}

\displaystyle \mathsf{PP-9P+2P-2\times9}}

Solve.

\displaystyle \mathsf{PP-9P+2P-2\times9}}=\boxed{P^2-7P-18}}

\mathsf{Factors \quad of \quad p^2-7p-18}

\mathsf{DISTRIBUTIVE \quad PROPERTY}

\mathsf{A(B+C)=AB+AC}

\displaystyle \mathsf{p^2+2p+(-9p-18)}

Factor it out by p.

\mathsf{p^2=pp}

\mathsf{pp+2p}}

Common term of p.

\displaystyle \mathsf{p(p+2)}

Factor it out by -9.

\displaystyle \mathsf{-9p-18}

\displaystyle \mathsf{2\times9=18}

Common term of -9.

\displaystyle \mathsf{=-9(p+2)}

Rewrite the whole problem down.

\displaystyle (p+2)-9(p+2)

Solve.

Common term of p+2.

\longrightarrow\Large\boxed{\mathsf{(p+2)(p-9)}}

Hence, the polynomial elements of p²-7p-18 is (p+2)(p-9).

Similar questions