Math, asked by deepaksai5136, 7 months ago

P4+q4+1/p4+1/q4=4 to √p2+q2=?

Answers

Answered by mysticd
1

 Given \: p^{4} + q^{4} + \frac{1}{p^{4}} + \frac{1}{q^{4}} = 4

 \implies p^{4} + q^{4} + \frac{1}{p^{4}} + \frac{1}{q^{4}} -4= 0

 \implies p^{4} + \frac{1}{p^{4}}-2 + q^{4} + \frac{1}{q^{4}} -2= 0

 (p^{2})^{2} +\Big( \frac{1}{p^{2}}\Big) ^{2} -2\times p^{2} \times \frac{1}{p^{2}}  + (q^{2})^{2} +\Big( \frac{1}{q^{2}}\Big) ^{2} -2\times q^{2} \times \frac{1}{q^{2}}= 0

 \implies \Big ( p^{2} - \frac{1}{p^{2}}\Big)^{2} + \Big ( q^{2} - \frac{1}{q^{2}}\Big)^{2} = 0

 \implies p^{2} - \frac{1}{p^{2}} =0 \: Or \: q^{2} - \frac{1}{q^{2}} =0

 \implies p^{2} =  \frac{1}{p^{2}} \: Or \: q^{2} =  \frac{1}{q^{2}}

 \implies p^{4} = 1 \: Or \: q^{4} = 1

 \implies p^{2} = 1 \: Or \: q^{2} = 1

Therefore.,

 \red { Value \: of \: \sqrt{ p^{2} + q^{2} } }

 = \sqrt{ 1 + 1 }

 \green { = \sqrt{2} }

•••♪

Similar questions