PA and PB are two tangents drawn from an external point P to a circle with Centre O and radius 4 cm if PA perpendicular PB find the length of Each tangent
Answers
Answer:
CA is perpendicular to AP and CB is perpendicular to BP
Again AC = BC = 4 (radius of the circle)
Also AP = PB = (Tangents from point P)
So, BPAC is a square.
=> AP = PB = BC = CA = 4 cm
So, length of tangents are 4 cm each
I hope this helps!
Diagram:-
Given:
- OA=OB=4cm (Radius)
- ∠APB=90°
- AP & PB=Tangents
To find:
- Length of Tangents
Solution:
⇒ ∠PAO=∠PBO=90°(angle made by Tangent with radius)
Now,
⇒ ∠APB+∠PBO+∠PAO+∠AOB=360°(Sum of all ∠ of quadrilateral)
⇒ 90°+90°+90°+∠AOB=360°
⇒ 270°+∠AOB=360°
⇒ ∠AOB=360°-270°
⇒ ∠AOB=90°
Now join AB in diagram
~Applying Pythagoras theorem in ∆AOB
⇒ AO²+OB²=AB²
⇒ (4cm)²+(4cm)²=AB²
⇒ 16cm²+16cm²=AB²
⇒ 32cm²=AB
⇒ √32cm²=AB
⇒ 4√2cm=AB
Now assume length of each tangent be x
Since, PAB is a right angled ∆, we can apply Pythagoras theorem in it.
~Applying Pythagoras theorem in ∆PAB
⇒ PA²+PB²=(4√2cm)²
⇒ x²+x²=32cm²
⇒ 2x²=32cm²
⇒ x²=32cm²/2
⇒ x²=16cm²
⇒ x=√16cm²
⇒ x=4cm
So the required length of tangent is 4cm.