Math, asked by sunitabardapurkar, 1 day ago

प्र. 60) दिलेल्या आकृतीमध्ये, जर AB आणि CD या दोन मनोऱ्यांची उंची अनुक्रमे h1 आणि h2 आहे. 0 हा AC चा मध्यबिंदू आहे. जर AB आणि CD हे बिंदू 0 पाशी 30° व 60° चा कोन करीत असतील तर h1 : h2
1) 2:1
2) 2:3
3) 3:2
4) 1:3

( please answer me step by step )​

Attachments:

Answers

Answered by Sauron
27

Answer:

पर्याय 4) 1:3

Step-by-step explanation:

AO = OC = x मानू, 

(प्रश्नामधील दिलेल्या आकृती नुसार),

∆ AOB मध्ये,

tan = कोनासमोरील बाजू/लगतची बाजू

tan 30° = 1/√3

1/√3 = h₁/x

h₁ = x/√3 -------------- (I)

∆ COD मध्ये,

tan 60° = √3

√3 = h₂/x

h₂ = √3x --------------- (II)

[(I) व (II) वरून]

h₁ : h₂ = x/√3 : √3x

(x/√3) × (1/√3x) = 1/3

1 : 3

पर्याय 4) 1:3

h₁ : h₂ = 1 : 3.

Answered by jaswasri2006
16

Question in English :

In the given figure, if the height of the two towers AB and CD is h1 and h2 respectively. 0 is the midpoint of AC. If the points AB and CD have angles of 30 ° and 60 upto 0, then h1: h2 is

 \underline{ \orange{ \rm ANSWER \:  \:  : }}

 \\

\underline{ \pink{ \rm GIVEN \:  \: DATA\: \: : }}

Height of tower AB = h₁

Height of tower CD = h₂

‘ O ’ is the midpoint of AC

Angle made by AOB is 30°

Angle made by COD is 60°

Let AO = OC = x metres

\underline{ \purple{ \rm \:TO\:  FIND\: \: : }}

 \large \rm  \frac{h_1}{h_2}  =   \: ?

\underline{ \red{ \rm SOLUTION \: \: : }}

In ∆AOB,

tan A = opposite/hypotenuse

➻ tan30° = 1/√3

➻ h₁ /x = 1/√3

h₁ = x/3 ____eq(1)

 \\

In ∆COD,

➻ tan60° = √3

➻ h₂/x = (√3)

h₂ = x3 _______eq(2)

Now,

Dividing eq(1)/eq(2),

➻ h₁/h₂ = (x/√3)/(x√3)

➻ h₁/h₂ = (x/√3) × (1/x√3)

➻ h₁/h₂ = 1/(√3)²

➻ h₁/h₂ = 1/√3 × 1/√3

h₁/h₂ = 1/3

 \\

 \boxed{ \color{green} \rm FINAL  \:  \: ANSWER} \:  :

h₁:h₂ = 1:3 .

option (4) is correct answer.

Similar questions