प्रूव दैट द परपेंडिकुलर राइट द पॉइंट ऑफ कांटेक्ट टू द चेंज इन टू अ सर्कल पासेस थ्रू द सेंटर
Answers
Answered by
3
Given a circle with center O and AB the tangent intersecting circle at point P
and prove that OP⊥AB
We know that tangent of the circle is perpendicular to radius at points of contact Hence
OP⊥AB
So, ∠OPB=90
o
..........(i)
Now lets assume some point X
Such that XP⊥AN
Hence ∠XPB=90
o
.........(ii)
From eq (i) & (ii)
∠OPB=∠XPB=90
o
Which is possible only if line XP passes though O
Hence perpendicular to tangent passes though centre
Similar questions