Hindi, asked by ratiramrathore04730, 1 month ago

प्र04 संधि विच्छेद कीजिए-
1 नीरज
2 जगन्नाथ
3 निर्धन
4 दिग्गज​

Answers

Answered by SAGARTHELEGEND
1

Answer:

Appropriate Question

\begin{gathered}\sf \: If \: tanA + sinA = m \: and \: tanA-sinA=n \\ \sf \: show \: that \: {m}^{2} \: - \: {n}^{2} \: = \: 4 \: \sqrt{mn} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

IftanA+sinA=mandtanA−sinA=n

showthatm

2

−n

2

=4

mn

\large\underline{\sf{Solution-}}

Solution−

Given that,

\rm :\longmapsto\:m = tanA + sinA:⟼m=tanA+sinA

and

\rm :\longmapsto\:n = tanA - sinA:⟼n=tanA−sinA

Now, Consider

\rm :\longmapsto\: {m}^{2} - {n}^{2}:⟼m

2

−n

2

On substituting the values of m and n, we get

\rm \: = \: \: {(tanA + sinA)}^{2} - {(tanA - sinA)}^{2} = (tanA+sinA)

2

−(tanA−sinA)

2

We know

\boxed{ \bf{ \: {(x + y)}^{2} - {(x - y)}^{2} = 4xy}}

(x+y)

2

−(x−y)

2

=4xy

So, using this identity, we get

\rm \: = \: \: 4 \: tanA \: sinA = 4tanAsinA

\bf\implies \: {m}^{2} - {n}^{2} = 4 \: tanA \: sinA - - - (1)⟹m

2

−n

2

=4tanAsinA−−−(1)

Now, Consider

\rm :\longmapsto\:4 \sqrt{mn}:⟼4

mn

On substituting the values of m and n, we get

\rm \: = \: \: 4 \sqrt{(tanA + sinA)(tanA - sinA)} = 4

(tanA+sinA)(tanA−sinA)

We know,

\boxed{ \bf{ \: (x + y)(x - y) = {x}^{2} - {y}^{2}}}

(x+y)(x−y)=x

2

−y

2

So, using this identity we get,

\rm \: = \: \: 4 \sqrt{ {tan}^{2}A - {sin}^{2}A } = 4

tan

2

A−sin

2

A

\rm \: = \: \: 4 \sqrt{ \dfrac{ {sin}^{2} A}{ {cos}^{2} A} - {sin}^{2}A } = 4

cos

2

A

sin

2

A

−sin

2

A

\rm \: = \: \: 4 \sqrt{ \bigg(\dfrac{1}{ {cos}^{2} A} - 1\bigg){sin}^{2}A } = 4

(

cos

2

A

1

−1)sin

2

A

We know,

\boxed{ \bf{ \: \frac{1}{cosx} = sinx}}

cosx

1

=sinx

So, using this

\rm \: = \: \: 4 \sqrt{ \bigg( {sec}^{2}A - 1\bigg){sin}^{2}A } = 4

(sec

2

A−1)sin

2

A

We know,

\boxed{ \bf{ \: {sec}^{2}x - {tan}^{2}x = 1}}

sec

2

x−tan

2

x=1

So, using this, we get

\rm \: = \: \: 4 \sqrt{ {tan}^{2} A \times {sin}^{2} A} = 4

tan

2

A×sin

2

A

\rm \: = \: \: 4tanA \: sinA = 4tanAsinA

\bf\implies \:4 \sqrt{mn} = 4 \: tanA \: sinA - - - (2)⟹4

mn

=4tanAsinA−−−(2)

From equation (1) and (2), we concluded that

\boxed{ \bf{ \: {m}^{2} - {n}^{2} = 4 \sqrt{mn}}}

m

2

−n

2

=4

mn

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Explanation:

#SAGARTHELEGEND

Similar questions