Math, asked by PragyaTbia, 1 year ago

प्रश्न 1 से 22 तक निम्नलिखित सीमाओं के मान प्राप्त कीजिए : \lim_{x\rightarrow0}\dfrac{\sin ax + bx}{ax + \sin bx}, \,a, \,b, \,a + b \neq 0

Answers

Answered by rahman786khalilu
0

hope it is helpful to you

Attachments:
Answered by poonambhatt213
0

Answer:

Step-by-step explanation:

x = 0 पर, दिए गए फ़ंक्शन का मान 0/0 का रूप लेता है।

अब

\lim_{x \to \ 0} \frac{sin ax + bx}{ax + sin bx}

= \lim_{x \to \ 0} \frac{(\frac{sin ax}{ax} ax + bx)}{ax + bx (\frac{sin bx}{bx} )}

= \frac{\lim_{ax \to \ 0}\frac{sin ax}{ax}* \lim_{x \to \ 0}(ax)+ \lim_{x \to \ 0}bx}{\lim_{x \to \ 0} ax +  \lim_{x \to \ 0} bx ( \lim_{bx \to \ 0} \frac{sinbx}{bx})}

[क्योकि x → 0 => ax→0 और bx→0 ]

=\frac{\lim_{x \to \ 0} ax + \lim_{x \to \ 0} bx}{ \lim_{x \to \ 0} ax + \lim_{x \to \ 0} bx}

=\frac{\lim_{x \to \ 0} (ax + bx)}{\lim_{x \to \ 0} (ax + bx)}

=\lim_{x \to \ 0} (1)

=1

Similar questions