Math, asked by sickboy5894, 12 days ago

प्रश्न 1: यदि f, g और h, R से R तक के तीन फलन हैं, f(x) = 3x + 7, g(x) = x2 + 1
और h(x) = 3x के रूप में परिभाषित हैं। फिर, fogoh(x) का ज्ञात कीजिए।

Answers

Answered by pulakmath007
1

SOLUTION

GIVEN

f(x) = 3x + 7, g(x) = x² + 1 and h(x) = 3x

TO DETERMINE

 \sf{f \circ g \circ h(x)}

EVALUATION

Here it is given that

f(x) = 3x + 7, g(x) = x² + 1 and h(x) = 3x

Now

 \sf{f \circ g \circ h(x)}

 \sf{ = f (g ( h(x)))}

 \sf{ = f (g (3x))}

 \sf{ = f (9 {x}^{2} + 1 )}

 \sf{ = 3(9 {x}^{2} + 1 ) + 7}

 \sf{ =27 {x}^{2} + 3+ 7}

 \sf{ =27 {x}^{2} + 10}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. On common factorization 12a+9 becomes 3a(4a+3) 

https://brainly.in/question/30544360

2. 6x2 + x - 15 is divided by 3x + 5.

In each case, verify your answer.

https://brainly.in/question/17277773

Similar questions