Math, asked by komalchouhanksg, 10 months ago

प्रश्न 35. कोई धन 4 वर्ष 500 रु. तथा छः वर्ष 550 रु. हो जाता है, तो
मूलधन ज्ञात कीजिए।​

Answers

Answered by Ridvisha
118
{ \tt{ \red{ \huge{ \underline{ \underline{ QUESTION- }}}}}}




▪ A sum of money amounts to Rs. 500 in 4 years and Rs. 550 in 6 years. Then, find the money??




{ \tt{ \red{ \underline{ \underline{ \huge{SOLUTION- }}}}}}




{ \sf{ \blue{let \: the \: principal \: be \: Rs . \: P}}} \\ \\ { \sf{ \blue{and \: the \: rate \: be \: R \: percent}}}




{ \pink{ \sf{ \underline{ \underline{Simple \: Interest \: (S .I.)}}}}}




{ \underline{ \boxed{ \sf{ \green{S.I . = \frac{P \times R  \times T}{100}}}}}}




{ \sf{ \pink{ \underline{ \underline{amount = P + S.I .}}}}}




where,




{ \star{ \blue{ \sf{ \: \: P = principal}}}} \\ \\ { \star{ \blue{ \sf{ \: \: R = rate}}}} \\ \\ { \star{ \blue{ \sf{ \: \: T = time}}}}




{ \purple{ \underline{ \bold{CASE\: 1}}}}




{ \orange{ \sf{principal \: = P }}} \\ \\ { \orange{ \sf{rate = R}}} \\ \\ { \orange{ \sf{ time = 4 \: years}}} \\ \\ { \orange{ \sf{ amount = Rs . \: 500}}}




{ \red{ \sf{ S .I . = \frac{P  \times R  \times 4}{100}}}}




{ \implies{ \sf{ \red{S .I. = \frac{4PR}{100}}}}}




{ \sf{ \blue{amount = \frac{4PR}{100} + P = \: Rs. \: 500}}}




{ \implies{ \blue{ \sf{ \frac{2PR }{50} + P = 500}}}}




{ \implies{ \blue{ \sf{ \frac{2PR + 50P}{50} = 500}}}}




{ \implies{ \blue{ \sf{2PR + 50P  = 500 \times 50}}}}




{ \implies{ \blue{ \sf{2PR  + 50P = 25000}}}} - - - { \sf{eqn(1)}}




 \bold{ \purple{ \underline{CASE  \: 2}}}




{ \orange{ \sf{ principal = P}}} \\ \\ { \orange{ \sf{rate = R}}} \\ \\ { \orange{ \sf{time = 6}}} \\ \\ { \orange{ \sf{ amount = Rs . \: 550}}}




{ \sf{ \red{S .I. = \frac{P \times R \times 6}{100}}}}




{ \implies{ \sf{ \red{S.I. = \frac{3PR}{50}}}}}




{ \blue{ \sf{amount = \frac{3PR }{50} + P = Rs . \: 550}}}




{ \implies{ \blue{ \sf{ \frac{3PR + 50P}{50} = 550}}}}




{ \implies{ \sf{ \blue{3PR + 50P = 550 \times 50}}}}




{ \implies{ \blue{ \sf{3PR  + 50P = 27500}}}} - - - { \sf{eqn(2)}}




▪ subtracting eqn (1) from eqn (2)....




{ \pink{ \sf{3PR + 50P  = 27500}}} - - - { \sf{eqn(2)}} \\ { \pink{ \sf{2PR + 50P  = 25000}}} - - - { \sf{eqn (1)}}\\ { \sf{ - \: \: \: \: \: \: - \: \: \: \: \: \: \: \: \: \: \: - }} \\ { \green{ \sf{PR \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 2500}}}




▪ putting the value of PR in eqn (1)...




{ \red{ \sf{2PR  + 50P  = 25000}}} - - - { \sf{eqn(1)}}




{ \implies{ \sf{ \red{2(2500) + 50P = 25000}}}}




{ \implies{ \red{ \sf{5000 + 50P = 25000}}}}




{ \implies{ \red{ \sf{50P = 25000 - 5000}}}}




{ \implies{ \red{ \sf{50P = 20000}}}}




{ \implies{ \red{ \sf{P = \frac{20000}{50}}}}}




{ \implies{ \boxed{ \boxed{ \red{ \sf{ \: \: \: P = Rs. \: 400 \: \: \: }}}}}}
Similar questions