Math, asked by durivirajini1387, 1 year ago

प्रथम सिद्धांत से cos x का अवकलन ज्ञात कीजिए l

Answers

Answered by poonambhatt213
11

Answer:

Step-by-step explanation:

F (x) = cos x तदनुसार, पहले सिद्धांत से,

f'(x) =\lim_{h \to \ 0} \frac{f(x+h)-f(x)}{h}

=\lim_{h \to \ 0} \frac{cos(x+h)-cos(x)}{h}

=\lim_{h \to \ 0} \frac{cosx+cosh)-sin x sin h-cosx}{h}

=\lim_{h \to \ 0} \frac{-cosx(1-cos h)-sin x sin h}{h}

=\lim_{h \to \ 0} \frac{-cosx(1-cos h)}{h}-\frac{-sin x sin h}{h}

= -cos x (\lim_{h \to \ 0} \frac{1 -cos h}{h}) - sin x \lim_{h \to \ 0} \frac{sin h}{h}[/tex]

= -cos x (0) - sin x (1)

[  ([tex]\lim_{h \to \ 0} \frac{1 -cos h}{h} = 0 तथा  (\lim_{h \to \ 0} \frac{sinh}{h} = 1[/tex] ]

= -sinx

∴ f'(x) = -sin x

Similar questions