Page 1.5
If x = 9 + 4√5 and xy = 1, then 1/x^2 + 1/y^2 is :
a) 322.....b) 155.....c) 69......d) 45
Answers
Answered by
5
. x = 9 + 4√5 ∴ y = 1/x = 9 - 4√5
∴ x + y = 18 ... and ... xy = 1 ............... (1)
__________________________
∴ (1/x²) + (1/y²)
= ( x² + y² ) / (x²y²)
= [ (x+y)² - 2(xy) ] / (xy)²
= [ (18)² - 2(1) ] / (1)² ............. from (1)
= ( 324 - 2 ) / (1)
= 322 ...............hope it may help you
.
.
.
plz mark as brainlest.......#MB
∴ x + y = 18 ... and ... xy = 1 ............... (1)
__________________________
∴ (1/x²) + (1/y²)
= ( x² + y² ) / (x²y²)
= [ (x+y)² - 2(xy) ] / (xy)²
= [ (18)² - 2(1) ] / (1)² ............. from (1)
= ( 324 - 2 ) / (1)
= 322 ...............hope it may help you
.
.
.
plz mark as brainlest.......#MB
RehanAhmadXLX:
Welcome :-)
Answered by
6
The answer is given below :
Given,
x = 9 + 4√5
Also,
xy = 1
=> y = 1/x
=> y = 1/(9 + 4√5)
=> y = {1/(9 + 4√5)} × {(9 - 4√5)/(9 - 4√5)}
=> y = (9 - 4√5)/(81 - 80)
=> y = 9 - 4√5
So, 1/x = 9 - 4√5 and 1/y = 9 + 4√5, since xy = 1.
Now,
1/x² + 1/y²
= (9 - 4√5)² + (9 + 4√5)²
= 81 - 72√5 + 80 + 81 + 72√5 + 80
= 322
Thus option (a) is the right answer.
Thank you for your question.
Given,
x = 9 + 4√5
Also,
xy = 1
=> y = 1/x
=> y = 1/(9 + 4√5)
=> y = {1/(9 + 4√5)} × {(9 - 4√5)/(9 - 4√5)}
=> y = (9 - 4√5)/(81 - 80)
=> y = 9 - 4√5
So, 1/x = 9 - 4√5 and 1/y = 9 + 4√5, since xy = 1.
Now,
1/x² + 1/y²
= (9 - 4√5)² + (9 + 4√5)²
= 81 - 72√5 + 80 + 81 + 72√5 + 80
= 322
Thus option (a) is the right answer.
Thank you for your question.
Similar questions