Math, asked by RehanAhmadXLX, 1 year ago

Page : 1.7
Find the equivalent fraction with rational denominator of \frac {8 \sqrt{3}-3 \sqrt{5} }{9 \sqrt{3} - 4 \sqrt {5}} :
a) \: \: \frac {156 + 5 \sqrt{15} }{163} \\ b) \: \: \frac {15 + 3 \sqrt{15} }{16} \\ c) \: \: \frac {16 + 5 \sqrt{5} }{13} \\ d) \: \: \frac {6 + \sqrt{15} }{3}

Answers

Answered by Anonymous
12
Heya!!

----------------------------

Hope it helps u :)

Attachments:

RehanAhmadXLX: Thanks :-)
Answered by Swarup1998
8
The answer is
given \\  \\ \frac {8 \sqrt{3}-3 \sqrt{5} }{9 \sqrt{3} - 4 \sqrt {5}}  \\  \\ now \:  \: we \:  \: multiply \:  \: the \:  \: denominator \\ by \:  \: the \:  \: conjugate \:  \: irrational \\ number \: (9 \sqrt{3}  + 4 \sqrt{5} ) \\  \\ so \\ \frac {8 \sqrt{3}-3 \sqrt{5} }{9 \sqrt{3} - 4 \sqrt {5}} \times \frac {9 \sqrt{3} + 4 \sqrt{5} }{9 \sqrt{3}   +  4 \sqrt {5}} \\  \\  =  \frac{(8 \sqrt{3}  - 3 \sqrt{5})(9 \sqrt{3}  + 4 \sqrt{5}  )}{( 9 \sqrt{3} - 4 \sqrt{5} )(9 \sqrt{3}  + 4 \sqrt{5} ) }  \\  \\  =  \frac{216 + 32 \sqrt{15}  - 27 \sqrt{15}  - 60}{243 - 80}  \\  \\  =  \frac{156 + 5 \sqrt{15} }{163}  \\  \\ therefore \:  \: the \:  \: first \:  \: option \\ is \:  \: correct

Thank you for your question.

RehanAhmadXLX: Thanks :-)
Swarup1998: My pleasure ^_^ bro
Similar questions