Page
Date
Prove that :-
sin (A+B) sin (A-B) 2 sin ² A- sin
A ? B -
B = cos B
cos² A
i.
ü
eos (Ato) Cos (A-BJ 2 cos²A sim ² B = cos
B = cos ²g sir RA
sin
A
in.
sin (A+B+C) 2 sin A cosB cose & cos A cos a coset cos A cosB eine
sin A sin B sine.
Cos (A + B + c)2 cos A coeB Case - cosa sin B sinensin A cosB sine-
sin A sin B coe e
tan (A + B+ () - Tan Artan B+ tan e- tan Atan B tan e
It tan Atan B-tan B tane - tane tan A
Answers
Answer:
Step-by-step explanation:
To Prove :-
1 ) sin(A + B) . sin(A - B) = sin²A - sin²B
= cos²B - cos²A
2) cos(A + B).cos(A - B) = cos²A - sin²B
= cos²B - sin²A
3) sin(A + B + C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC
4) cos(A + B + C) = cosAcosBcosC - sinAsinBcosC - sinAcosBsinC - cosAsinBsinC
5) tan(A + B + C) = tanA + tanB + tanC - tanAtanBtanC/1-tanAtanB-tanBtanC-tanCtanA
Solution :-
Proving 'sin(A + B) . sin(A - B) = sin²A - sin²B = cos²B - cos²A' :-
Taking L.H.S :-
= sin(A + B) . sin(A - B)
= (sinAcosB + cosAsinB) . (sinAcosB - cosAsinB)
= (sinAcosB)² - (cosAsinB)²
[ ∴ (a + b)(a - b) = a² - b² ]
= sin²Acos²B - cos²Asin²B
= sin²A(1 - sin²B) - (1 - sin²A)sin²B
[ ∴ sin²α + cos²α = 1]
= sin²A - sin²Asin²B - sin²B + sin²Asin²B
= sin²A - sin²B
= (1 - cos²A) - (1 - cos²B)
[ ∴ sin²α + cos²α = 1]
= 1 - cos²A - 1 + cos²B
= cos²B - cos²A
= R.H.S
Hence Proved.
2) Proving ' cos(A + B).cos(A - B) = cos²A - sin²B = cos²B - sin²A' :-
Taking L.H.S :-
= cos(A + B) . cos(A - B)
= (cosAcosB - sinAsinB) . (cosAcosB + sinAsinB)
= (cosAcosB)^2 - (sinAsinB)^2
[ ∴ (a + b)(a - b) = a² - b² ]
= cos²Acos²B - sin²Asin²B
= cos²Acos²B - (1 - cos²A) (1 - cos²B)
= cos²Acos²B - [1 - cos²B - cos²A + cos²Acos²B]
= cos²Acos²B - 1 + cos²B + cos²A - cos²Acos²B
= - 1 + cos²B + cos²A
[let it be equation - 1]
= -sin²B + cos²A
= cos²A - sin²B
From 1 :-
= - 1 + cos²B + cos²A
= - 1 + cos²A + cos²B
= -sin²A + cos²B
= cos²B - sin²A
= R.H.S
Hence Proved.
3) Proving ' sin(A + B + C) =sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC ' :-
Taking L.H.S :-
sin(A + B + C)
= sin((A + B) + C)
= sin(A + B).cosC + cos(A + B).sinC
= (sinAcosB + cosAsinB)cosC + (cosAcosB - sinAsinB).sinC
= sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC
= R.H.S
Hence Proved
Proving 'cos(A + B + C) = cosAcosBcosC - sinAsinBcosC - sinAcosBsinC - cosAsinBsinC ' :-
Taking L.H.S :-
cos(A + B + C)
= cos((A + B) + C)
= cos(A + B).cosC - sin(A + B).sinC
= (cosAcosB - sinAsinB)cosC - (sinAcosB + cosAsinB).sinC
= cosAcosBcosC - sinAsinBcosC - sinAcosBsinC - cosAsinBsinC
= R.H.S
Hence Proved
Proving 'tan(A + B + C) =tanA + tanB + tanC - tanAtanBtanC/1-tanAtanB-tanBtanC-tanCtanA ' :-
Taking L.H.S :-
tan(A + B + C)
= tan((A + B) + C)
= tan(A + B) + tanC/1 - tan(A + B).tanC
= R.H.S
Hence Proved.