Math, asked by dev2497, 9 months ago

Page No.
Date
Prove tan 2 alpha - tan alpha = tan alpha sec2 alpha​

Answers

Answered by mathdude500
1

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:tan2 \alpha  - tan \alpha  = tan \alpha sec2 \alpha

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:tan2 \alpha  - tan \alpha

We know

\boxed{ \rm{ tanx =  \frac{sinx}{cosx}}}

So, using this, we get

\rm \:  =  \:  \: \dfrac{sin2 \alpha }{cos2\alpha }  - \dfrac{sin\alpha }{cos\alpha }

\rm \:  =  \:  \: \dfrac{sin2\alpha \:  cos\alpha  - sin\alpha \:  cos2\alpha }{cos2\alpha  \: cos\alpha }

We know that

\boxed{ \rm{ sin(x - y) = sinxcosy - sinycosx}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{sin(2\alpha  \:  -  \: \alpha )}{cos2\alpha  \: cos\alpha }

\rm \:  =  \:  \: \dfrac{sin\alpha  }{cos2\alpha  \: cos\alpha }

\rm \:  =  \:  \: \dfrac{1}{cos2\alpha }  \times \dfrac{sin\alpha }{cos\alpha }

\rm \:  =  \:  \: sec2\alpha  \: tan\alpha

Hence, Proved

Additional Information :-

\boxed{ \rm{ sin(x + y) = sinxcosy +sinycosx}}

\boxed{ \rm{ cos(x + y) = cosxcosy - sinxsiny}}

\boxed{ \rm{ cos(x  -  y) = cosxcosy  +  sinxsiny}}

\boxed{ \rm{ tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}

\boxed{ \rm{ tan(x  -  y) =  \frac{tanx  - tan y}{1  +  tanxtany}}}

\boxed{ \rm{  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y)}}

\boxed{ \rm{  {cos}^{2}x -  {sin}^{2}y = cos(x + y)cos(x - y)}}

Answered by Anonymous
1

\fbox{ tan2α - tanα }

We know that :

\large\rm{ tanx = \large\frac{sinx}{cosx}  }

By Applying this :-

 =  \frac{ \sin2 \alpha  }{ \cos2 \alpha  }  -  \frac{ \sin \alpha  }{ \cos \alpha }  \\

 =  \frac{ \sin2 \alpha  \cos \alpha  -  \sin \alpha  \cos2 \alpha   }{ \cos2 \alpha  \cos \alpha }  \\

We know that :

\fbox{ sib(x-y)  = sinxcosy-sinycosx }

By using this we get :

 =  \frac{ \sin(2 \alpha  -  \alpha ) }{ \cos2 \alpha  \cos \alpha   }  \\

 =  \frac{ \sin \alpha  }{ \cos2 \alpha  \cos \alpha  }  \\

 =  \frac{1}{ \cos2 \alpha }  \times   \frac{ \sin \alpha  }{ \cos \alpha  }  \\

 =  \sec2 \alpha  \tan \alpha  \\

━━━━━━━━━━━━━━━━━━━━

Hope this will help you!! don't report :D

Similar questions