Math, asked by vanshagarwala2502, 4 months ago

PAGE
The Area of a trapezium is 405
cm2, whose height of is 9cm.If one of the parallel sides of trapezium is
48 cm. Find the other parallel sides​

Answers

Answered by PshychoISHU
47

Answer:

let \: the \: parallel \: side \: be \: 4x \: . \: 5x \:  \\ respectively

height = 18cm

the \: area \: of \: trapezium \:  = 405 {cm}^{2}

 \frac{1}{2} h(a + b) = 405

 \frac{1}{2}  \times 18 \times (4x  + 5x) = 405 \\  \\ 9 \times 9x = 405 \\  \\

81x = 405

x =  \frac{405}{81}  \\  \\ x = 5

the \: length \: of \: each \: of \: parallel \: \\  sides  \: 20cm \: and \: 25cm \: \\  respecively

Answered by kailashmannem
88

------------------------------------------------------------

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • The Area of a trapezium is 405 cm², whose height of is 9cm. If one of the parallel sides of trapezium is 48 cm. Find the other parallel sides.

-------------------------------------------------------------

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \sf{Area \: of \: trapezium\: = \: 405 \: cm^{2}.}

  •  \sf{Height \:of \:trapezium\: = \: 9 \: cm.}

  •  \sf{Length \: of \: 1 \: parallel \: side \: = \: a \: = \: 48 \: cm.}

  •  \sf{Area \: of \: trapezium \: = \: \dfrac{a \: + \: b}{2} \: * \: h}

  •  \sf{Substituting \: the \: value,}

  •  \sf{405\: = \: \dfrac{48 \: + \: b}{2} \: * \: 9}

  •  \sf{\dfrac{405 \: * \: 2}{9} \: = \: 48 \: + \: b}

  •  \sf{\dfrac{810}{9} \: = \: 48 \: + \: b}

  •  \sf{90 \: = \: 48 \: + \: b}

  •  \sf{b \: = \: 90 \: - \: 48}

  •  \boxed{\therefore{\sf{b \: = \: 42 \: cm.}}}

-------------------------------------------------------------

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{Length \: of \: other \: parallel \: side \: = \: b \: = \: 42 \: cm.}}}

----------------------------------------------------------------

Similar questions