Math, asked by amjadali9441256734, 5 months ago

pairs of linear equations intersect at a point / are parallel / are coincident . a) 5x-4y+8=0 7x+6y-9=0​

Answers

Answered by Anonymous
93

\huge\underline\bold\orange{Answer:-}

\large\underline\bold\green{Given:-}

\impliespair of equations 5x – 4y + 8 =0 and 7x + 6y -9 = 0

\large\underline\bold\red{To\:Prove:-}

\impliesThe lines representing the pair  are parallel , coincident , Intersect at a point or none of these

\large\underline\bold\red{solution:-}

Two lines

\implies a₁x  + b₁y  + c₁ = 0

\implies a₂x  + b₂y  + c₂ = 0

parallel  if  a₁/a₂  = b₁/b₂  

Coincident if a₁/a₂  = b₁/b₂  =  c₁ / c₂

Intersect at a point  if a₁/a₂ ≠ b₁/b₂  

Lets check    for

\dashrightarrow5x – 4y + 8 =0

\dashrightarrow7x + 6y -9 = 0

\dashrightarrowa₁/a₂  = 5/7    

\dashrightarrowb₁/b₂  =  - 4/6  

\dashrightarrowc₁ / c₂  = 8/-9

\dashrightarrow5/7      ≠  - 4/6  

\dashrightarrowa₁/a₂   ≠ b₁/b₂  

\small\underline\bold\red{lines\:intersect\:at\:a\:point}


nawabichora98: fantastic^^
Answered by bhavyagoel1412
2

Given: a pair of equations 5x -4y+8=0 and 7x+6y-9=0

To find: the lines representing the pair are parallel coincident, intersect at a point or none of these.

Solution :

Two lines

a₁x + b₁y + c₁ = 0

a₂x + b₂y + c₂ = 0

parallel if a₁/a₂ = b₁/b₂

Coincident if a₁/a₂ = b₁/b₂ = c₁ / c₂

Intersect at a point if a₁/a₂ ≠ b₁/b₂

Lets check for

5x – 4y + 8 =0

7x + 6y -9 = 0

a₁/a₂ = 5/7

b₁/b₂ = - 4/6

c₁ / c₂ = 8/-9

5/7 ≠ - 4/6

a₁/a₂ ≠ b₁/b₂

=> lines intersect at a point

Similar questions