Math, asked by hirok7298, 1 year ago

Pairs of radii 3 cm 4 cm and 5 cm are melted together to form a single sphere find the radius of the sphere

Answers

Answered by gegfhfhbduwobshakdbs
1

 \large \tt AHOY!! \:


ATQ, spheres of radii 3 cm 4 cm and 5 cm are melted together to form a single sphere. we have to find the radius of new sphere formed.

total volume of the three spheres of radius 3cm, 4cm and 5cm = volume of the new sphere

volume of the sphere of radius 3cm = 4/3πr³

= 4/3 × 22/7 × 3 × 3 × 3

= 88/21 × 3 × 3 × 3

= 2376/21cm³

volume of the sphere of radius 4cm = 4/3πr³

= 4/3 × 22/7 × 4 × 4 × 4

= 88/21 × 4 × 4 × 4

= 5632/21cm³

volume of the sphere of radius 5cm = 4/3πr³

= 4/3 × 22/7 × 5 × 5 × 5

= 88/21 × 5 × 5 × 5

= 11000/21cm³

therefore total volume = 2376/21 + 5632/21 + 11000/21

= (2376 + 5632 + 11000)/21

= 19008/21cm³

therefore the volume of the new sphere is also 190008/21cm³

to find it's radius,

=> 4/3πr³ = 19008/21cm³

=> 4/3 × 22/7 × r³ = 19008/21cm³

=> 88/21 × r³ = 19008/21cm³

=> r³ = 19008/21 × 21/88

=> r³ = 216

=> r = ³√216

=> r = ³√(6 × 6 × 6)

=> r = 6cm

hence, the radius of the single sphere formed is 6cm.

 \large \tt HOPE \:  THIS \:  HELPS!!
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Given-} \\

Radius of Three Metallic Spheres are 3 cm , 4 cm and 5 cm.

 \bf \underline{To\: find-} \\

Radius of New Shape who makes by melting those there sphare

 \bf \underline{Solution-} \\

\textsf{We know that,}\\

\pink{\boxed{\bf{Volume\ of \ Sphare = \dfrac{4}{3}πr³}}} \\  \\

\textsf{Valume of Sphare whose radius is 3.}\\

 \small\sf{~~~~~:\implies.Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  3³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  27}

\small\sf{~~~~~:\implies Volume= 4.2 \times27}

\small\sf{~~~~~:\implies Volume= 112.4} \\  \\

\textsf{Valume of Sphare whose radius is 3= 112.4cm³}\\

\textsf{Valume of Sphare whose radius is 4.}\\

\small \sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  4³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}   \times  64}

\small\sf{~~~~~:\implies Volume= 4.2\times  64}

\small\sf{~~~~~:\implies Volume=268.8} \\  \\

\textsf{Valume of Sphare whose radius is 4=268.8cm³}\\

\textsf{Valume of Sphare whose radius is 5.}\\

 \small\sf{~~~~~:\implies Volume= \dfrac{4}{3} \times   \dfrac{22}{7}  \times  5³}

\small\sf{~~~~~:\implies Volume= \dfrac{88}{21}  \times  125}

\small\sf{~~~~~:\implies Volume=4.2 \times  125}

\small\sf{~~~~~:\implies Volume=525}

\textsf{Valume of Sphare whose radius is 5=525cm³}\\

\textsf{Now it is Given that All 3 Sphare are mealted and convert into a new Sphare}\\

\textsf{Volume of new sphare = 112.4+268.8+225 }\\

\textsf{Volume of new sphare = 906.8}

\textsf{Radius of New Sphare = ?}\\

\boxed{\bf{Volume\ of  \: new   \: Sphare = \dfrac{4}{3}πr³}} \\  \\

 \sf{~~~~~:\implies 906.8 = \dfrac{4}{3}  \times \dfrac{  22}{7} \times  r³}

\sf{ ~~~~~:\implies  r³ =  \dfrac{906.8 \times 21}{88} }

\sf{ ~~~~~:\implies r³ =  \dfrac{19030.2}{88} }

\sf{~~~~~:\implies   r³ =  216 }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{216}  }

\sf{~~~~~:\implies   r =  \sqrt[3]{6 \times 6 \times 6}  }

\sf{ ~~~~~:\implies  r =  \sqrt[3]{ {6}^{3}}   }

\sf{ ~~~~~:\implies r =  6   }

 \bf \underline{Hance,the \:radius\: of \:New\: Sphere\: is\: 6 cm.-} \\

Similar questions