Math, asked by arjastutimandal, 1 day ago

Paper sheets each of thickness 1.4×10^−2 cm are stacked such that the total thickness of the stack is 4.2 cm. Find the number of paper sheets.

Answers

Answered by qwwestham
2

The number of paper sheets in the given stack is 3000.

Given,

Paper sheets are stacked.

Each sheet thickness = 1.4 × 10⁻² cm,

Total stack thickness = 4.2 cm.

To find,

The number of paper sheets.

Solution,

Here, it can be seen that some sheets of paper are stacked in such a way that,

the thickness of the stack = 4.2 cm.

Further, each sheet of paper has a thickness of 1.4 × 10⁻² cm.

This can be written as

1.4 × 10⁻² cm = 0.0014 cm.

Now, let the total number of sheets be 'n'.

It may be observed that,

n \times  (thickness \hspace{3} of \hspace{3} 1 \hspace{3} sheet) = total \hspace{3} stack \hspace{3} thickness \hfill ...(1)

Substituting the respective values in (1), we get,

n \times 0.0014 = 4.2

Rearranging,

n=\frac{4.2}{0.0014} =3000

n = number of paper sheets = 3000.

Therefore, the number of paper sheets in the given stack is 3000.

#SPJ1

Answered by shivamchoudhary2040
0

Answer:

3000

Step-by-step explanation:

it is an expert verified answer

Similar questions