Economy, asked by aj0358468, 9 months ago

papers
(iii) The G.M. of 3 and 24 with weight 2 and 1 respectively is
(A) 8
(B) 4
(C) 6
(D) 9​

Answers

Answered by ramyasri27081998
7

Answer:

square root of 3x2 and 24 and 1 = 12÷2×1= 6

Answered by pulakmath007
44

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{The \:  geometric \:  mean \:  of \:  n \:  terms \:  \:  x_1,x_2,....x_n}

 \sf{with \:  weights \:  \:  w_1, w_2,.....,w_n  \: respectively  \: is \:   }

 = \displaystyle  \sf{ \bigg({\prod\limits_{i = 1}^{n}  {x_i}^{w_i} \bigg) }^{  \frac{1}{\sum\limits_{i = 1}^{n}w_i} }}

TO DETERMINE

The G.M. of 3 and 24 with weight 2 and 1 respectively

CALCULATION

 \sf{Here \:  \:  \:  x_1 = 3  \: \:  and \:  \:  x_2 = 24}

 \sf{Also \:  \:  w_1 = 2  \:  \:  \: and \:  \:  \:  w_2 = 1}

So

= \displaystyle  \sf{ \bigg({\prod\limits_{i = 1}^{2}  {x_i}^{w_i} \bigg) }}

= \displaystyle  \sf{   {x_1}^{w_1} \times {x_2}^{w_2} \: }

 =  \sf{ {3}^{2} \times  {24}^{1}  }

 =  \sf{ {3}^{2} \times  3 \times 8  }

 =  \sf{ {3}^{3} \times  {2}^{3}   }

 =  \sf{ {6}^{3}   }

Also

 = \displaystyle  \sf{ \sum\limits_{i = 1}^{2}w_i}

 = \displaystyle  \sf{ w_1 +w_2 }

 =  \sf{ 2 + 1\: }

 =  \sf{3}

Hence the Geometric mean

 = \displaystyle  \sf{ \bigg({\prod\limits_{i = 1}^{2}  {x_i}^{w_i} \bigg) }^{  \frac{1}{\sum\limits_{i = 1}^{2}w_i} }}

 = \displaystyle  \sf{ \bigg({ {6}^{3} \bigg) }^{ \frac{1}{3}  }}

 =  \sf{6}

RESULT

Hence The G.M. of 3 and 24 with weight 2 and 1 respectively is 6

Similar questions