Math, asked by Harshiie4576, 1 year ago

Parabola which touches x axis at (1,0) and y axis as (0,2)

Answers

Answered by UmangThakar
2

Answer:

          Given in the question,  Parabola touches X-axis at (1,0)  and Y-axis at (0,2).

            Let the equation of directrix is parabola y=mx  and co-ordinate focus of parabola is (h,k).

We know that, Equation of parabola is

\sqrt{(x-h)^{2} +(y-k)^{2}  } = / \frac{y-mx}{\sqrt{1+m^2} }}  } /

Taking squares on both Sides, we get

{(x-h)^{2} +(y-k)^{2}  } = /  \frac{(y-mx)^2}{(1+m)^{2} }  /

If passes through the point (1,0)  Then,

(0-h)^{2} + (1-k)^{2} = \frac{1}{1+m^2}   .............. equation 1

It also passes through (0,2)

(2-h)^{2} + k^2 = \frac{m^2}{1+m^2}   .................  equation 2

Adding equation 1 and 2, we have

h^2 + (1-k)^{2} + (2-h)^{2} + k^2 =  \frac{1}{1+m^2}  +  \frac{m^2}{1+m^2}

2h^2 + 2k^2 - 4h - 2k + 5 = 1

2h^2 + 2k^2 - 4h - 2k + 4 = 0

h^2 + k^2 - 2h - k + 2 = 0

Hence the locus of (x, y)

x^2 + y^2 - 2x - y + 2 = 0

Hence, The Locus is (-g,-f) = ( 1 , \frac{1}{2} )

Answered by PoojaBurra
1

Given :

The parabola touches X-axis at point A(1,0)

The parabola touches Y-axis at point B(0,2)

To Find :

The equation of parabola

Solution :

  • The general equation of parabola having focus(h,k) and directrix equation y=mx is

                \sqrt{(x-h)^{2}+(y-k)^{2} } = \frac{y-mx}{\sqrt{1+m^{2} } }

     

                 (x-h)^{2}+(y-k)^{2}  = \frac{y-mx ^{2} }{1+m^{2} } }

  • The parabola passes through the point A(0,1)

                (0-h)^{2}+(1-k)^{2}  = \frac{1 }{1+m^{2} } } \rightarrow Equation (1)

  • The parabola passes through the point B(2,0)

                (2-h)^{2}+(0-k)^{2}  = \frac{m^{2} }{1+m^{2} } }\rightarrow Equation(2)

  • By adding equations (1) and (2) we get

            (0-h)^{2}+(1-k)^{2} + (2-h)^{2}+(0-k)^{2}  = \frac{1 }{1+m^{2} } }+  \frac{m^{2} }{1+m^{2} } }

            2h^{2} + 2k^{2} -4h -2k +4 =0

            h^{2} +k^{2} -2h-k+2=0      

The locus of the equation of parabola is  x²+y²-2x-y+2=0

Similar questions