Math, asked by kartekkr4176, 1 year ago

Parabola y^2=4ax passes through( 2, -8) find iths latus rectum

Answers

Answered by sachinaryan55
0

Step-by-step explanation:

I think this question belong to class 12th

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:latus\:rectum=32\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{given :}} \\  \tt{:   \implies  eqn \: of \: parabola \: ({y}^{2}  =4 ax}) \\  \\  \tt{: \implies point \: on \: parabola = (2, - 8) } \\  \\ \red{ \underline \bold{to \: find :}} \\  \tt{:  \implies length \: of \: latus \: rectum = ?}

• According to given question :

 \tt {: \implies  {y}^{2}  = 4ax} \\  \\   \to \text{2,- 8 \: is \: on \: parabola \: so, \: the}\\   \text{Eqn \: satisfy \: this \: point} \\  \\  \tt{: \implies  { (- 8)}^{2}  = 4 \times a \times   2} \\  \\  \tt{:  \implies 64 =   8a} \\  \\  \tt{:  \implies a =  \frac{ 64}{8} } \\  \\   \green{\tt{:  \implies a = 8}} \\  \\   \green{ \tt{:  \implies Eqn \: of \: parabola \: is \:  \:  {y}^{2}  = 32x}} \\  \\  \bold{As \: we \: know \: that} \\   \tt{:  \implies Length \: of \: latus \: rectum = 4a} \\  \\ \tt{:  \implies Length \: of \: latus \: rectum = 4 \times 8} \\  \\  \green{\tt{:  \implies Length \: of \: latus \: rectum = 32 \: units}}

Similar questions