Math, asked by Nicknameisnickname, 1 year ago

Parallelogram ABCD and rectangle ABEF have same base and equal areas. prove that perimeter of parallelogram is greater than that of rectangle.

Answers

Answered by ROYALJATT
138
Since opposite sides of a|| gm and rectangle are equal. 
Therefore AB = DC               [Since ABCD is a || gm]
and,           AB = EF               [Since ABEF is a rectangle]
Therefore  DC = EF                                                                     ... (1) 
⇒          AB + DC = AB + EF  (Add AB in both sides)                   ... (2) 
Since, of all the segments that can be drawn to a given line from a point not lying on it, the perpendicular segment is the shortest. 
Therefore BE < BC and AF < AD 
⇒ BC > BE and AD > AF 
⇒ BC + AD > BE + AF                   ... (3) 
Adding (2) and (3), we get 
AB + DC + BC + AD > AB + EF + BE + AF 
⇒ AB + BC + CD + DA > AB + BE + EF + FA 
⇒  perimeter of || gm ABCD > perimeter of rectangle ABEF.
Hence,the perimeter of the parallelogram is greater than that of the rectangle.
Answered by Meww
99
=> Opp sides of ||gm and rect are equal. 
=> AB = DC            
=> AB = EF       
=> DC = EF (1) 
=> AB + DC = AB + EF  (Adding AB in both sides) (2) 
=> The perpendicular segment is the shortest
=> BE < BC & AF < AD 
=> BC > BE & AD > AF 
=> BC + AD > BE + AF (3) 
=> Adding (2) and (3)
=> AB + DC + BC + AD > AB + EF + BE + AF 
=> AB + BC + CD + DA > AB + BE + EF + FA 
=> P of  ABCD > P of ABEF
                                     Proved

Meww: mark as brainliest plzzzzzzzzzzz
Naagin: why did u delete previous answer?
Naagin: it was correct
Meww: the abv cmnt was his ans
Meww: u say its crct
Similar questions