parallelogram length of one of the diagonals is Is 14cm, then find the length of other diagonal
Answers
Answer:
Hope it helps u
Step-by-step explanation:
d² = l² + w²
Please mark me as brainliest
Answer:
Predecessor of n=n-1" role="presentation" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 13px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(0, 0, 0); font-family: Lato, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(224, 234, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;">n=n−1n=n-1
Successor of n=n+1" role="presentation" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 13px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(0, 0, 0); font-family: Lato, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(224, 234, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;">n=n+1n=n+1
∴" role="presentation" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 13px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(0, 0, 0); font-family: Lato, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(224, 234, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;">∴∴ Sum of successor and predecessor of n=n-1+n+1=2n" role="presentation" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 13px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(0, 0, 0); font-family: Lato, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(224, 234, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;">n=n−1+n+1=2n