Part A: Explain how Enzyme A acts as a catalyst in the reaction. Be sure to include energy and time in your answer. (2 points)
Part B: Conditions around an enzyme change and affect the shape of the enzyme's active sites. Predict how an increase in temperature might affect the enzyme's ability to catalyze the reaction. (2 points)
Answers
Explanation:
catalyzed particular chemical reactions – in this case, reactions that broke down the film of eye goo that accumulated on my contacts after a week of use. (Presumably, the reason it stung when I got it in my eyes was that the enzymes would also happily break down eye goo in an intact eye.) In this article, we’ll look in greater depth at what an enzyme is and how it catalyzes a particular chemical reaction.
Enzymes and activation energy
A substance that speeds up a chemical reaction—without being a reactant—is called a catalyst. The catalysts for biochemical reactions that happen in living organisms are called enzymes. Enzymes are usually proteins, though some ribonucleic acid (RNA) molecules act as enzymes too.
Enzymes perform the critical task of lowering a reaction's activation energy—that is, the amount of energy that must be put in for the reaction to begin. Enzymes work by binding to reactant molecules and holding them in such a way that the chemical bond-breaking and bond-forming processes take place more readily.
Reaction coordinate diagram showing the course of a reaction with and without a catalyst. With the catalyst, the activation energy is lower than without. However, the catalyst does not change the ∆G for the reaction.