Math, asked by anas10salmani12, 3 months ago

Part-B
Amit plants some seeds of gram and he measured the height of plant after four days. Plot the
height of every point.
100
Day Height in cm
8
0
0
4
Heigho
8
1.4
5.3
9.5
12.
4
3
2
1
16
10.9
Plot Area
0
4
8.
16
12
Day​

Answers

Answered by itzRealQueen
4

Answer:

ʟᴇᴛ's ғɪʀsᴛ ᴛᴀᴋᴇ ᴛʜᴇ ᴅᴇɴᴏᴍɪɴᴀᴛᴏʀ...

\begin{gathered}denominator \: = \beta + {aw}^{3} + \gamma {w}^{2} + s {w}^{2} \: \: \: \: \: \: \: \: \: \: (multiplying \: and \: dividing \: by \: w) \\ \\ < /p > < p > \end{gathered}

denominator=β+aw

3

+γw

2

+sw

2

(multiplyinganddividingbyw)

</p><p>

= \frac{1}{w} ( \beta w + a + \gamma {w}^{2} + s {w}^{2} \: \: \: \: \: \: \: (since \: {w}^{3} = 1=

w

1

(βw+a+γw

2

+sw

2

(sincew

3

=1

= \frac{1}{w} (a + \beta w + \gamma \frac{w}{2} + s {w}^{2}=

w

1

(a+βw+γ

2

w

+sw

2

Now

\begin{gathered}( \frac{a}{ \beta } + \frac{ \beta w}{ aw {}^{2} } + \frac{ \gamma {w}^{2} }{ \gamma w} + \frac{ {sw}^{2} }{sw} \\ \\ = \frac{a + \beta w + \gamma {w }^{2}s {w}^{2} }{ \frac{1}{w}(a + \beta w + \gamma {w}^{2} + s {w}^{2} } \end{gathered}

(

β

a

+

aw

2

βw

+

γw

γw

2

+

sw

sw

2

=

w

1

(a+βw+γw

2

+sw

2

a+βw+γw

2

sw

2

Therefore,

( \frac{a + \beta w + \gamma {w}^{2} + s {w}^{2} }{ \beta + a {w}^{2} + \gamma w + sw} )(

β+aw

2

+γw+sw

a+βw+γw

2

+sw

2

)

=w^2

Hope Its Helps uh...

Similar questions