Math, asked by Anubhavsingh7429, 5 months ago

Partial Differential co-efficient of U = sin(ax + by + cz).

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{U=sin(ax+by+cz)}

\underline{\textbf{To find:}}

\textsf{Partial differential coefficient of U}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{U=sin(ax+by+cz)}

\textsf{Differentiate partially with respect to 'x'}

\mathsf{\dfrac{\partial{U}}{\partial{x}}=cos(ax+by+cz).\dfrac{\partial(ax+by+cz)}{\partial{x}}}

\mathsf{\dfrac{\partial{U}}{\partial{x}}=cos(ax+by+cz).a}

\implies\boxed{\mathsf{\dfrac{\partial{U}}{\partial{x}}=a\,cos(ax+by+cz)}}

\mathsf{U=sin(ax+by+cz)}

\textsf{Differentiate partially with respect to 'y'}

\mathsf{\dfrac{\partial{U}}{\partial{y}}=cos(ax+by+cz).\dfrac{\partial(ax+by+cz)}{\partial{y}}}

\mathsf{\dfrac{\partial{U}}{\partial{y}}=cos(ax+by+cz).b}

\implies\boxed{\mathsf{\dfrac{\partial{U}}{\partial{y}}=b\,cos(ax+by+cz)}}

\mathsf{U=sin(ax+by+cz)}

\textsf{Differentiate partially with respect to 'z'}

\mathsf{\dfrac{\partial{U}}{\partial{z}}=cos(ax+by+cz).\dfrac{\partial(ax+by+cz)}{\partial{z}}}

\mathsf{\dfrac{\partial{U}}{\partial{z}}=cos(ax+by+cz).c}

\implies\boxed{\mathsf{\dfrac{\partial{U}}{\partial{z}}=c\,cos(ax+by+cz)}}

#SPJ3

Similar questions