partial fraction of x^2+x+1/X+2(x^2+1)
Answers
Answered by
1
Answer:
Input:
x^2 + x + 1/X + 2 (x^2 + 1)
3D plot:
3D plot
Contour plot:
Contour plot
Alternate form:
(3 x^2 X + x X + 2 X + 1)/X
Expanded form:
3 x^2 + x + 1/X + 2
Roots:
3 x^2 + x + 2!=0, X = 1/(-3 x^2 - x - 2)
X = 1/(-3 x^2 - x - 2)
Properties as a real function:
Domain
R (all real numbers)
Range
{y element R : X!=0 and X (X (12 y - 23) - 12)>=0}
Roots for the variable x:
x = 1/6 (-sqrt(-23 X - 12)/sqrt(X) - 1)
x = 1/6 (sqrt(-23 X - 12)/sqrt(X) - 1)
Derivative:
d/dx(x^2 + x + 1/X + 2 (x^2 + 1)) = 6 x + 1
Indefinite integral:
integral(x + x^2 + 2 (1 + x^2) + 1/X) dx = x^3 + x^2/2 + x/X + 2 x + constant
Series representations:
x + x^2 + 2 (1 + x^2) + 1/X = 3 + x + 3 x^2 + sum_(n=1)^∞ (-1)^n (-1 + X)^n
x + x^2 + 2 (1 + x^2) + 1/X = sum_(n=-∞)^∞ ( piecewise | 1 | n = -1
2 + x + 3 x^2 | n = 0) X^n
Related Queries
HOPE IT HELPS YOU
MARK IT AS BRAINLIEST ANSWER
Similar questions