Math, asked by zk768599, 2 days ago

Partial fraction of x/(x+1) (x+2)² is

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm \: \dfrac{x}{(x + 1) {(x + 2)}^{2} }  = \dfrac{a}{x + 1}  + \dfrac{b}{x + 2}  + \dfrac{c}{ {(x + 2)}^{2} }  -  - (1) \\

On taking LCM, we get

\rm \: x = a {(x + 2)}^{2} + b(x + 1)(x + 2) + c(x + 1) -  - (2) \\

On substituting x = - 1 in equation (2), we get

\rm \:  - 1 = a {( - 1 + 2)}^{2} + b( - 1 + 1)( - 1 + 2) + c( - 1 + 1) \\

\rm \:  - 1 = a(1) + 0 + 0 \\

\rm\implies \:\boxed{ \rm{ \:a \:  =  \:  -  \: 1 \:  \: }} \\

On substituting x = - 2 in equation (2), we get

\rm \:  - 2 = a {( - 2 + 2)}^{2} + b( - 2 + 1)( - 2 + 2) + c( - 2 + 1)  \\

\rm \:  - 2 = 0 + 0 - c \\

\rm\implies \:\boxed{ \rm{ \:c \:  =  \: 2 \:  \: }} \\

On substituting x = 0, in equation (2), we get

\rm \:0 = a {(0 + 2)}^{2} + b(0 + 1)(0 + 2) + c(0 + 1) \\

\rm \:0 = 4a + 2b + c \\

On substituting the values of a and c, we get

\rm \:0 =  - 4 + 2b + 2 \\

\rm \:0 =  - 2 + 2b \\

\rm \: 2b = 2 \\

\rm\implies \:\boxed{ \rm{ \:b \:  =  \: 1 \:  \: }} \\

So, on substituting the values of a, b and c in equation (1), we get

\boxed{ \rm{\dfrac{x}{(x + 1) {(x + 2)}^{2} }  =  - \dfrac{1}{x + 1}  + \dfrac{1}{x + 2}  + \dfrac{2}{ {(x + 2)}^{2} }}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Fraction & \bf Partial \:  Fraction \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \dfrac{1}{(ax + b)(cx + d)}  & \sf \dfrac{p}{ax + b}  + \dfrac{q}{cx + d}  \\ \\ \sf \dfrac{1}{ {(ax + b)}^{2} }  & \sf \dfrac{p}{ax + b}  + \dfrac{q}{ {(ax + b)}^{2} }  \\ \\ \sf \dfrac{1}{(ax + b)(c {x}^{2}  + d)}  & \sf \dfrac{p}{ax + b}  + \dfrac{qx + r}{c {x}^{2}  + d}  \end{array}} \\ \end{gathered}

Answered by talpadadilip417
1

Step-by-step explanation:

Partial Fraction Decomposition begins.

 \\  \tt\frac{x}{(x+1){(x+2)}^{2}}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{{(x+2)}^{2}}

Rewrite the right side of the equation with a common denominator.

 \\  \tt\frac{x}{(x+1){(x+2)}^{2}}=\frac{A{(x+2)}^{2}+B(x+1)(x+2)+C(x+1)}{(x+1){(x+2)}^{2}}

Cancel (x+1)(x+2)².

 \\ \tt x=A{(x+2)}^{2}+B(x+1)(x+2)+C(x+1)

 \\ \tt x=A{x}^{2}+4Ax+4A+B{x}^{2}+3Bx+2B+Cx+C

Group terms by degrees of x.

x=(A+B)x²+(4A+3B+C)x+4A+2B+C

Set up an equation system based on the degrees of x.

 \\ \begin{aligned}& \tt \: A+B=0\\& \tt4A+3B+C=1\\& \tt4A+2B+C=0\end{aligned}

Substitute A,B,C into the original expression.

 \\  \tt\frac{x}{(x+1){(x+2)}^{2}}=-\frac{1}{x+1}+\frac{1}{x+2}+\frac{2}{{(x+2)}^{2}}

Partial Fraction Decomposition completes.

 \\  \tt-\frac{1}{x+1}+\frac{1}{x+2}+\frac{2}{{(x+2)}^{2}}

Similar questions