Physics, asked by totobi933, 7 months ago

particles of masses 100 and 300 gram have position vectors (2î+5j+13k) and (-6î+4j+2k) position vector of centre of mass is

Answers

Answered by snehitha2
3

Answer:

\bf{(4 \hat{i} +\frac{17}{4}  \hat{j} + \frac{19}{4}  \hat{k})

Explanation:

Let the position vector of centre of mass be, (x_{cm},y_{cm},z_{cm})

=> particles of masses 100 and 300 gram have position vectors (2î+5j+13k) and (-6î+4j+2k)

   

  m_1=100 \ grams \\ m_2=300 \ grams \\\\ x_1=2\\x_2=-6 \\\\ y_1=5\\y_2=4\\\\z_1=13\\z_2=2

------------------------------------------

x_{cm}=\frac{m_1x_1+m_2x_2}{m_1+m_2} \\\\ x_{cm}=\frac{100(2)+300(-6)}{100+300} \\\\ x_{cm}=\frac{200-1800}{400} \\\\ x_{cm}=\frac{-1600}{400} \\\\ x_{cm}=-4

-------------------------------------------

y_{cm}=\frac{m_1y_1+m_2y_2}{m_1+m_2} \\\\ y_{cm}=\frac{100(5)+300(4)}{100+300} \\\\ y_{cm}=\frac{500+1200}{400} \\\\ y_{cm}=\frac{1700}{400} \\\\ y_{cm}=\frac{17}{4}

---------------------------------------------

z_{cm}=\frac{m_1z_1+m_2z_2}{m_1+m_2} \\\\ z_{cm}=\frac{100(13)+300(2)}{100+300} \\\\ z_{cm}=\frac{1300+600}{400} \\\\ z_{cm}=\frac{1900}{400} \\\\ z_{cm}=\frac{19}{4}

-----------------------------------------------

⇒ The position vector of centre of mass is \bf{(4 \hat{i} +\frac{17}{4}  \hat{j} + \frac{19}{4}  \hat{k})

Similar questions