Math, asked by utkarshnaphade, 1 month ago

Particular Integral of (D ^ 2 - 2D + 1) * y = e ^ x is​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

☆ Given Differential equation is

\rm :\longmapsto\:({D}^{2}  - 2D + 1)y =  {e}^{x}

So,

☆ Particular integral of Differential equation is

\rm :\longmapsto\:P.I. = \dfrac{1}{ {D}^{2} - 2D + 1 }  {e}^{x}

\rm \:  \:  =  \: \dfrac{1}{1 - 2 + 1} {e}^{x}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{on \: substituting \: D = 1 \}

\rm \:  \:  =  \: \dfrac{1}{0} {e}^{x}   \:  \: which \: is \: case \: of \: failure

\bf\implies \:P.I. = x \: \dfrac{1}{\dfrac{d}{dD}( {D}^{2} - 2D + 1)}{e}^{x}

\rm \:  \:  =  \: x \: \dfrac{1}{2D - 2}{e}^{x}

\rm \:  \:  =  \: x \: \dfrac{1}{2 \times 1 - 2}{e}^{x}  \:  \:  \:  \:  \:  \:  \{on \: substituting \: D = 1 \}

\rm \:  \:  =  \: x \: \dfrac{1}{0}{e}^{x} \:  \: which \: is \: case \: of \: failure

\bf\implies \:P.I. =  {x}^{2} \dfrac{1}{\dfrac{d}{dD}(2D - 2) } {e}^{x}

\rm \:  \:  =  \:  {x}^{2} \dfrac{1}{2}{e}^{x}

\rm \:  \:  =  \:  \dfrac{ {x}^{2} }{2}{e}^{x}

\bf\implies \:P.I. \:  =  \dfrac{ {x}^{2} }{2}{e}^{x}

Similar questions