Math, asked by 20r21a6629, 1 month ago

particular integral of (d^2-4)y=2cos^2x​

Answers

Answered by 12thpáìn
2

Find a Particular solution to the equation

(D^2+4)y=4x^2\cos 2x

\begin{align}        \sf       y_p&=        \sf      \frac{1}{D^2+4}(4x^2\cos 2x)\\  \\ &        \sf      =\frac{1}{D^2+4}\left[2x^2(e^{2ix}+e^{-2ix})\right]\\    \\       \sf       &=        \sf      2\left[e^{2ix}\frac{1}{(D+2i)^2+4}x^2+e^{-2ix}\frac{1}{(D-2i)^2+4}x^2\right]\\   \\ \sf       &=        \sf      2\left[e^{2ix}\frac{1}{D(D+4i)}x^2+e^{-2ix}\frac{1}{D(D-4i)}x^2\right]\\        \sf       \end{align} \\

  • But I stuck at this point because how to solve 1/D(D+4i)x²? The solution provide this

 \\ \begin{align} &=        \sf      2\left[e^{2ix}\frac{1}{D(D+4i)}x^2+e^{-2ix}\frac{1}{D(D-4i)}x^2\right]\\ \\ &=        \sf      \frac{1}{4i}\left[e^{2ix}D^{-1}\left(2x^2+ix-\frac{1}{4}\right)-e^{-2ix}D^{-1}\left(2x^2-ix-\frac{1}{4}\right)\right]\\ \\  &=        \sf      \frac{1}{24}[6x^2\cos 2x+x(8x^2-3)\sin 2x] \end{align} \\

  • I still can't figure out how they do this. Any help will be appreciated

______________________________

Method 2

 \\         \sf      \begin{align} &amp;        \sf      =\frac{1}{4i}\left[e^{2ix}D^{-1}\left(2x^2+ix-\frac{1}{4}\right)-e^{-2ix}D^{-1}\left(2x^2-ix-\frac{1}{4}\right)\right]\\  \\ &amp;=        \sf      \frac{1}{4i}\left[e^{2ix}\left(2\frac{x^3}{3}+i\frac{x^2}{2}-\frac{x}{4}\right)-e^{-2ix}\left(2\frac{x^3}{3}-i\frac{x^2}{2}-\frac{x}{4}\right)\right]\\ \\  &amp;=        \sf      \frac{1}{4i}\left[\frac{2x^3}{3}(e^{2ix}-e^{-2ix})+\frac{x^2i}{2}(e^{2ix}-e^{-2ix})-\frac{x}{4}(e^{2ix}-e^{-2ix})\right]\\ \\  &amp;=        \sf      \frac{1}{4i}\left[\frac{2x^3}{3}2\cos 2x+\frac{x^2i}{2}2\cos 2x-\frac{x}{4}2\cos 2x\right] \end{align}</p><p> \\

Hope you like my answer.

Answered by Anonymous
0

[tex]Find a Particular solution to the equation(D^2+4)y=4x^2\cos 2x\</strong>begin{align}        \sf       y_p&amp;=        \sf      \frac{1}{D^2+4}(4x^2\cos 2x)\\  \\ &amp;        \sf      =\frac{1}{D^2+4}\left[2x^2(e^{2ix}+e^{-2ix})\right<strong>]\\    \\       \sf       &amp;=        \sf      2\left[e^{2ix}\frac{1}{(D+2i)^2+4}x^2+e^{-2ix}\</strong>frac{1}{(D-2i)^2+4}x^2\right]\\   \\ \sf       &amp;=        \sf      2\left[e^{2ix}\frac{1}{D(D+4i)}<strong>x^2+e^{-2ix}\frac{1}{D(D-4i)}x^2\right]\\        \sf       \end{align} \\ But I stuck at this point because how to solve 1/D(D+4i)x²? The solution provide this </strong>\\ \begin{align} &amp;=        \sf      2\left[e^{2ix}\frac{1}{D(D+4i)}x^2+e^{-2ix}\frac{1}{D(D-4i)}x^2\right]\\ \\ &amp;=        \sf      <strong>\frac{1}{4i}\left[e^{2ix}D^{-1}\left(2x^2+ix-\frac{1}{4}\right)-e^{-2ix}D^{-1}\left(2x^2-ix-\frac{1}{4}\right)\right]\\ \\  &amp;=        \sf      \frac{1}{24}[6x^2\cos2x</strong>+x(8x^2-3)\sin 2x] \end{align} \\ Istill can't figure out how they do this. Any help will beappreciated______________________________[/</strong>tex]<strong>Method 2</strong>[tex] \\         \sf      \begin{align} &amp;        \sf      =\frac{1}{4i}\left[e^<strong>{2ix}D^{-1}\left(2x^2+ix-\frac{1}{4}\right)-e^{-2ix}D^{-1}\left(2x^2-ix-\frac{1}{4}\right</strong>)\right]\\  \\ &amp;=        \sf      \frac{1}{4i}\left[e^{2ix}\left(2\frac{x^3}{3}+i\frac{x^2}{2}-\frac{x}{4}\<strong>right)-e^{-2ix}\left(2\frac{x^3}{3}-i\frac</strong>{x^2}{2}-\frac{x}{4}\right)\right]\\ \\  &amp;=       <strong> \sf      \frac{1}{4i}\left[\frac{2x^3}{3}(e^{2ix}-e^{-2ix})+\frac{x^2i}{2}(e^{2ix}-</strong>e^{-2ix})-\frac{x}{4}(e^{2ix}-e^{-2ix})\<strong>right]\\ \\  &amp;=        \sf      \frac{1}{4i}\left[\frac{2x^3}{3}2\cos 2x+\frac{x^2i}{2}2\cos</strong> 2x-\frac{x}{4}2\cos 2x\right] \end{align} \\ Hope you like my answer.[/tex]

Similar questions