Physics, asked by dlakshmyms, 5 months ago

Pb.7. A weight Q is suspended from a small ring, C, supported by two cords, AC and BC.
The cord AC is fastened at A while the cord BC passes over a smooth frictionless pulley at B
and carries a weight P as shown in Fig.28. If P = Q and a = 50°, find the angle B

Attachments:

Answers

Answered by DARLO20
4

\huge\mathbb{\color{coral}QUESTION} \\

♕ A weight Q is suspended from a small ring C supported by two cords AC and BC. The cord AC is fastened at A while cord BC passes over a frictionless pulley at B and carries a weight P. If P = Q and \rm{\alpha} = 50°, find the value of \rm{\beta}.

\huge\mathbb{\color{olive}SOLUTION} \\

\Large\bf{\color{indigo}GiVeN,} \\

  • Mass of Q = Mass of P

  • \rm{\alpha} = 50°

➡ See the attachment free body diagram.

S is an unknown symbol as shown in the diagram.

\bf\red{Resolving\:horizontally,} \\

\longmapsto\:\:\bf\blue{S\:\sin{50}\:=\:Q\:\sin{\beta}\:} \\

\longmapsto\:\:\bf{S\:=\:Q\:\dfrac{\sin{\beta}}{\sin{50}}\:}--(1) \\

\bf\red{Resolving\:Vertically,} \\

\longmapsto\:\:\bf\purple{S\:\cos{50}\:+\:Q\:\cos{\beta}\:=\:Q\:} \\

\longmapsto\:\:\bf{S\:\cos{50}\:=\:Q\:-\:Q\:\cos{\beta}\:} \\

\longmapsto\:\:\bf{S\:\cos{50}\:=\:Q\:\Big(1\:-\:\cos{\beta}\Big)\:} \\

✔ Putting the value of S from equation(1), we get

\longmapsto\:\:\bf{Q\:\dfrac{\sin{\beta}}{\sin{50}}\times{\cos{50}}\:=\:Q\:\Big(1\:-\:\cos{\beta}\Big)\:} \\

\longmapsto\:\:\bf{\dfrac{\cos{50}}{\sin{50}}\:=\:\dfrac{(1\:-\:\cos{\beta})}{\sin{\beta}}\:} \\

\longmapsto\:\:\bf{\cot{50}\:=\:\dfrac{(1\:-\:\cos{\beta})}{\sin{\beta}}\:} \\

\longmapsto\:\:\bf{0.839\:=\:\dfrac{(1\:-\:\cos{\beta})}{\sin{\beta}}\:} \\

\longmapsto\:\:\bf{0.839\:{\sin{\beta}}\:=\:1\:-\:\cos{\beta}\:} \\

✒ Squaring both sides,

\longmapsto\:\:\bf{(0.839\:{\sin{\beta}})^2\:=\:(1\:-\:\cos{\beta})^2\:} \\

\longmapsto\:\:\bf{0.703\:{\sin^2{\beta}}\:=\:1\:+\:\cos^2{\beta}\:-\:2\cos{\beta}\:} \\

\longmapsto\:\:\bf{0.703\:(1\:-\:\cos^2{\beta})\:=\:1\:+\:\cos^2{\beta}\:-\:2\cos{\beta}\:} \\

\longmapsto\:\:\bf{0.703\:-\:0.703\:\cos^2{\beta}\:=\:1\:+\:\cos^2{\beta}\:-\:2\cos{\beta}\:} \\

\longmapsto\:\:\bf{1.703\:\cos^2{\beta}\:-\:2\cos{\beta}\:+\:0.297\:=\:0\:} \\

\longmapsto\:\:\bf{\cos^2{\beta}\:-\:1.174\:\cos{\beta}\:+\:0.174\:=\:0\:} \\

Solving the above equation, we get

\longmapsto\:\:\bf\green{\beta\:=\:63.13°} \\

Attachments:
Similar questions