Math, asked by Dhruv1202, 1 year ago

People please solve this ASAP
x -  \frac{1}{x} =  -  \sqrt{3}   \\  \\ x^{3}  -  \frac{1}{x^{3} }  =

Answers

Answered by Anonymous
6

\mathrm{Given :\;x - \dfrac{1}{x} = -\sqrt{3}}

Cubing on both sides

\mathrm{\implies \left(x - \dfrac{1}{x}\right)^3 = (-\sqrt{3})^3}

Use Identity : (p - q)³ = p³ - 3p²q + 3pq² + q³

\mathrm{\implies (x)^3 - \left(\dfrac{1}{x}\right)^3 + 3(x)\left(\dfrac{1}{x}\right)^2 - 3(x)^2\left(\dfrac{1}{x}\right)= -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} + 3x\left(\dfrac{1}{x^2}\right) - 3x^2\left(\dfrac{1}{x}\right)= -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} + \dfrac{3}{x} - 3x = -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} - 3\left(x - \dfrac{1}{x}\right) = -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} - 3\left(-\sqrt{3}\right) = -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} + 3\sqrt{3} = -3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} = -3\sqrt{3} - 3\sqrt{3}}

\mathrm{\implies x^3 - \dfrac{1}{x^3} = -6\sqrt{3}}

Similar questions