Math, asked by jiminlovli, 3 months ago

perform the integration, integrate dx/(1-x) √1+x)​

Answers

Answered by Anonymous
13

Given Integrand,

 \displaystyle \sf \int  \dfrac{dx}{(x - 1) \sqrt{x + 1} }

Let y² = x + 1.

Differentiating w.r.t x,

 \longrightarrow \sf \: 2y  \dfrac{dy}{dx}  = 1 \\  \\  \longrightarrow \sf 2ydy = dx

Also, x = y² - 1.

Now,

 \longrightarrow \displaystyle \sf \int  \dfrac{2ydy}{(y {}^{2} - 1  - 1) y}  \\  \\  \longrightarrow \displaystyle \sf 2\int  \dfrac{dy}{(y {}^{2} - 2)}

We know that,

 \displaystyle  \star \:  \boxed { \boxed{\sf \int  \dfrac{dx}{ {x}^{2} -  {a}^{2}  }  =  \frac{1}{2a}  log  \bigg| \dfrac{x - a}{x + a}   \bigg|   + C}}

Now,

 \longrightarrow \sf \: 2 \times  \dfrac{1}{2 \times 2}  log  \bigg| \dfrac{y - 2}{y + 2}  \bigg|  + C \\  \\  \longrightarrow \sf \dfrac{1}{2}  log  \bigg| \dfrac{x + 1 - 2}{x + 1 + 2}  \bigg|  + C \\  \\ \longrightarrow \sf \dfrac{1}{2}  log  \bigg| \dfrac{x  - 1}{x + 3}  \bigg|  + C

Thus,

 \star \:  \displaystyle \boxed{ \boxed{ \sf \int  \dfrac{dx}{(x - 1) \sqrt{x + 1} }  = \dfrac{1}{2}  log  \bigg| \dfrac{x  - 1}{x + 3}  \bigg|  + C}}

Similar questions