Math, asked by hakdog2hakdigididog, 5 months ago

Perform the operation being asked in each item. simplify your final answer.​

Attachments:

Answers

Answered by prashantranjan875781
0

Answer:

Badshah beta bahut gfyubb

Step-by-step explanation:

vftt. gy. tyay ggtc yg vufigibjo

Answered by akshay0222
2

Given,

\[1.\frac{{3ab}}{5} \times \frac{{4b}}{{{a^2}}}\]

\[2.\frac{{3{x^2}}}{2} \times \frac{2}{{9x}}\]

\[3.\frac{{{x^2} - x - 6}}{{5x + 5}} \times \frac{5}{{x - 3}}\]

\[4.\frac{4}{{n - 6}} \div \frac{{4n}}{{8n - 48}}\]

\[5.\frac{{a - 4}}{{{a^2} - 2a - 8}} \div \frac{1}{{a - 5}}\]

\[6.\frac{{6a + 27}}{{18{a^2} + 36a}} \div \frac{{16a + 72}}{{2a + 4}}\]

Solution,

1. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{{3ab}}{5} \times \frac{{4b}}{{{a^2}}}\\ \Rightarrow \frac{{12{b^2}}}{{5a}}\end{array}\]

2. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{{3{x^2}}}{2} \times \frac{2}{{9x}}\\ \Rightarrow \frac{x}{3}\end{array}\]

3. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{{{x^2} - x - 6}}{{5x + 5}} \times \frac{5}{{x - 3}}\\ \Rightarrow \frac{{\left( {x - 3} \right)\left( {x + 2} \right)}}{{5\left( {x + 1} \right)}} \times \frac{5}{{\left( {x - 3} \right)}}\\ \Rightarrow \frac{{x + 2}}{{x + 1}}\end{array}\]

4. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{4}{{n - 6}} \div \frac{{4n}}{{8n - 48}}\\ \Rightarrow \frac{4}{{n - 6}} \times \frac{{8n - 48}}{{4n}}\\ \Rightarrow \frac{4}{{n - 6}} \times \frac{{8\left( {n - 6} \right)}}{{4n}}\\ \Rightarrow \frac{8}{n}\end{array}\]

5. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{{a - 4}}{{{a^2} - 2a - 8}} \div \frac{1}{{a - 5}}\\ \Rightarrow \frac{{a - 4}}{{{a^2} - 2a - 8}} \times a - 5\\ \Rightarrow \frac{{a - 4}}{{\left( {a - 4} \right)\left( {a + 2} \right)}} \times \left( {a - 5} \right)\\ \Rightarrow \frac{{a - 5}}{{a + 2}}\end{array}\]

6. Apply the appropriate mathematical operation.

\[\begin{array}{l} \Rightarrow \frac{{6a + 27}}{{18{a^2} + 36a}} \div \frac{{16a + 72}}{{2a + 4}}\\ \Rightarrow \frac{{6a + 27}}{{18{a^2} + 36a}} \times \frac{{2a + 4}}{{16a + 72}}\\ \Rightarrow \frac{{6a + 27}}{{9a\left( {2a + 4} \right)}} \times \frac{{2a + 4}}{{16a + 72}}\\ \Rightarrow \frac{1}{{9a}}\end{array}\]

Hence, the solution to the equations are \[\frac{{12{b^2}}}{{5a}},\frac{x}{3},\frac{{x + 2}}{{x + 1}},\frac{8}{n},\frac{{a - 5}}{{a + 2}}\,{\rm{and}}\frac{1}{{9a}}.\]

Similar questions