Math, asked by jyotibalagupta857, 9 months ago

perimeter
An isosceles triangle
has
30cm and each the equal is
12cm. Find the area
of the triangle​

Answers

Answered by Anonymous
46

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • Perimeter= 30cm
  • In isosceles triangle two sides are equal =12cm

{\bf{\blue{\underline{Find:}}}}

  • Area of triangle

{\bf{\blue{\underline{Now:}}}}

{\star \: { \boxed{\sf{ \purple{ \: semi \: perimeter \: of \: triangle =  \frac{a + b + c}{2} }}}}} \\ \\  </p><p>

Where,

  • a=12
  • b=12
  • c=?
  • semi-perimeter(s)=30/2=15

{\implies{\sf{ Perimeter =  12 + 12 + c }}} \\ \\

{\implies{\sf{ 30 =  12 + 12 + c}}} \\ \\

{\implies{\sf{ 30 =  24+ c}}} \\ \\

{\implies{\sf{ 30  -   24 =  c}}} \\ \\

{\implies{\sf{ c =  6}}} \\ \\

{\star \: { \boxed{\sf{ \purple{ area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} }}}}} \\ \\

{\implies{\sf{  \sqrt{15(15 - 12)(15 - 12)(15 - 6)} }}} \\ \\

{\implies{\sf{  \sqrt{15(3)(3)(9)} }}} \\ \\

{\implies{\sf{  \sqrt{15(9)(9)} }}} \\ \\

{\implies{\sf{ 9 \sqrt{15} }}} \\ \\

Hence the Area of triangle is =9√15cm²

Attachments:
Answered by TheSentinel
52

\purple{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}} \\ \\

\rm{Perimeter \ of \ an \ isosceles \ triangle \ is \ 30 \ cm}

\rm{and \ it's \ two \ sides \ are \ of \ 12 \ cm.}

\rm{Find \ the \ area \ of \ the \ triangle}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\tt{\red{\star{\boxed{\green{\implies{ Area \  of \  triangle \ is \  = \ 9 \sqrt{15}}}}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{Perimeter \ of \ the \ isosceles \ triangle :}

\rm\implies{30 \ cm} \\ \\

\rm{In \ isosceles \ triangle \ two \  sides \ are \  equal : }

\rm\implies{12 \ cm}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Area \ of \ the \ triangle }

________________________________________

\green{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}} \\ \\

\rm{We \ are \ given ,} \\

\rm{Perimeter \ of \ the \ isosceles \ triangle :}

\rm\implies{30 \ cm} \\ \\

\rm{In \ isosceles \ triangle \ two \  sides \ are \  equal : }

\rm\implies{12 \ cm} \\ \\

\rm{Let , \ p, \ q, \ and \ r \ be \ the \ sides \ of \ \triangle}

\rm{Where,} \\

\rm{p=12 , \ q=12}

\rm{We \ know,}

\rm{\green{\boxed{\star{\orange{ Semi \ perimeter \ \implies \frac{(p+q+r)}{2}}}}}} \\

\rm{But, \ we \ know}

\rm{Perimeter \ = \ 2 \times \  (Semi \ perimeter)}

\rm\therefore{Perimeter \ \implies \ ( \ p \ + \ q + \ r \ )} \\

\rm\therefore{30 \ \implies \  12 \ + \ 12 \ + \ r} \\

\rm\therefore{30 \ \implies \ 24 \ + \ r} \\

\rm\therefore{r \ \implies \ 30 \ - \ 24} \\

\rm\therefore{r \ \implies \ 6} \\

\rm{\pink{\boxed{\star{\blue{ r \ \implies \ 6}}}}} \\

\rm{Now} \\

{ \boxed{\bf{ \orange{ area \: of \: triangle =  \sqrt{s(s - p)(s - q)(s - r)} }}}} \\ \\

{\therefore{\rm{  \sqrt{15(15 - 12)(15 - 12)(15 - 6)} }}} \\ \\

{\therefore{\rm{ Area\ of \ \triangle \ =  \  \sqrt{15(3)(3)(9)} }}} \\ \\

{\therefore{\rm{ Area\ of \ \triangle \ =  \  \sqrt{15(9)(9)} }}} \\ \\

{\therefore{\rm{  Area\ of \ \triangle \ =  \ 9 \sqrt{15} }}} \\ \\

\tt{\red{\star{\boxed{\green{\implies{ Area \  of \  triangle \ is \  = \ 9 \sqrt{15}}}}}}}

___________________________________________

\bf\orange{hope \ it \ helps \ :))}

Similar questions