Math, asked by ritusharma0786, 3 months ago

perimeter of a recatangular field js 100cm. and length is 40 cm. find the breath​

Answers

Answered by TheChaгm
7

Given:-

  • Perimeter of a rectangular field i.e. 100 cm.
  • Length of the field i.e. 40 cm.

________________________________

To find:-

  • Breadth of the rectangular field.

________________________________

Solution:-

Let the breadth of the rectangular field be x

Perimeter of the field= 100 cm

Length of the field= 40 cm

Perimeter of rectangle:- 2(l+b)

Putting values:-

100= 2(40+x)

100= 80+2x

100-80= 2x

20= 2x

x= 20÷2

x= 10

________________________________

So the breadth we found is 10 cm.

________________________________

Answered by INSIDI0US
201

Step-by-step explanation:

\frak Given = \begin{cases} &\sf{Perimeter\ of\ the\ rectangular\ field\ =\ 100cm.} \\ &\sf{Length\ of\ the\ rectangular\ field\ =\ 40cm.} \end{cases}

To find:- We have to find the breadth of the rectangular field ?

__________________

 \frak{\underline{\underline{\dag As\ we\ know\ that:-}}}

 \sf : \implies {\pink{\underline{Perimeter_{(rectangle)}\ =\ 2(l\ +\ b).}}}

__________________

 \frak{\underline{\underline{\dag By\ substituting\ the\ values,\ we\ get:-}}}

 \sf : \implies {Perimeter\ =\ 2(l\ +\ b)} \\ \\ \sf : \implies {100\ =\ 2(40\ +\ b)} \\ \\ \sf : \implies {\cancel \dfrac{100}{2}\ =\ 40\ +\ b} \\ \\ \sf : \implies {50\ =\ 40\ +\ b} \\ \\ \sf : \implies {50\ -\ 40\ =\ b} \\ \\ \sf : \implies {10\ =\ b} \\ \\ \sf : \implies {\purple{\underline{\boxed{\bf Breadth\ =\ 10cm.}}}}\bigstar

Hence:-

 \sf \therefore {\underline{The\ required\ breadth\ of\ the\ rectangular\ field\ is\ 10cm.}}

 \bf{\underline{\underline{More\ to\ know:-}}}

 \sf : \implies {Perimeter_{(parallelogram)}\ =\ 2(Base\ +\ Height).}

 \sf : \implies {Perimeter_{(triangle)}\ =\ a\ +\ b\ +\ c\ [a,\ b,\ and\ c\ being\ the\ length\ sides].}

 \sf : \implies {Perimeter_{(square)}\ =\ 4a\ [a\ =\ length\ of\ a\ side].}

 \sf : \implies {Perimeter_{(rhombus)}\ =\ 4\ ×\ a\ [a\ =\ length\ of\ a\ side].}

Similar questions