Math, asked by rakhiashumodi, 2 months ago

perimeter of a rectangle is 2.4 meter less than 2/5 of perimeter of a square. if the perimeter of the square is 40 meter; find the length and breadth of the rectangle given that breath is 1/3 of the length.

Answers

Answered by BrainlyTwinklingstar
4

Answer

First, we should find the perimeter of the rectangle.

Perimeter of the rectangle :

\sf \dashrightarrow \bigg( \dfrac{2}{5} \: of \: 40 \bigg) - 2.4

\sf \dashrightarrow \bigg( \dfrac{2}{5} \times 40 \bigg) - 2.4

\sf \dashrightarrow \bigg(\dfrac{2 \times 40}{5} \bigg) - 2.4

\sf \dashrightarrow \bigg( \dfrac{80}{5} \bigg) - 2.4

\sf \dashrightarrow 16 - 2.4

\sf \dashrightarrow Perimetre = 13.6

Now, we can find the length of the rectangle by the formula of perimetre of the rectangle.

Length of the rectangle :

Let the length of the rectangle be y.

Let the breadth of the rectangle b ⅓ of y.

\sf \dashrightarrow {Perimetre}_{(Rectangle)} = 2 \: (Length + Breadth)

\sf \dashrightarrow 13.6 = 2 \: \bigg(y + \dfrac{1}{3} \: of \: y \bigg)

\sf \dashrightarrow 13.6 = 2 \: \bigg(y + \dfrac{1}{3} \times y \bigg)

\sf \dashrightarrow 13.6 = 2 \: \bigg( y + \dfrac{1y}{3} \bigg)

\sf \dashrightarrow 13.6 = 2 \: \bigg( \dfrac{3y + 1y}{3} \bigg)

\sf \dashrightarrow 13.6 = 2 \: \bigg( \dfrac{4y}{3}\bigg)

\sf \dashrightarrow \dfrac{4y}{3} = \dfrac{13.6}{2}

\sf \dashrightarrow \dfrac{4y}{3} = 6.8

\sf \dashrightarrow 4y = 6.8 \times 3

\sf \dashrightarrow 4y = 20.4

\sf \dashrightarrow y = \dfrac{20.4}{4}

\sf \dashrightarrow y = 5.1 \: m

Now, let's find the breadth of the rectangle.

Breadth of the rectangle :

\sf \dashrightarrow \dfrac{1}{3} \: of \: 5.1

\sf \dashrightarrow \dfrac{1}{3} \times 5.1

\sf \dashrightarrow \dfrac{1 \times 5.1}{3} = \dfrac{5.1}{3}

\sf \dashrightarrow \cancel \dfrac{5.1}{3} = 1.7

Hence, the length and breadth of the rectangle are 5.1 and 1.7 metres respectively.

Similar questions