Math, asked by malavikatp666nbr, 2 months ago

perimeter of a rectangle is 25 cm, one of the side of this rectangle is 7.5cm,find the length of other side?​

Answers

Answered by navya99arora
0

Answer:

x=3.33333

Step-by-step explanation:

let 1 side of the rectangle be x.

x*7.5=25

x=25/7.5

x=250/75

x=10/3

or

x=3.33333

Answered by ItzBrainlyBeast
111

\maltese\LARGE\textsf{\underline{ FiGuRe :-}}

\large\textsf{                                                               }

\large\textsf{Length = 7.5 cm}

\boxed{\begin{array}{ c c c c } \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \; \\\\ \; \; \; \; & \; \; \; \; & \; \; \; \; & \; \; \; \;\end{array}} Breadth = 5 cm

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ GiVeN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Perimeter of rectangle = 25 cm}

\qquad\tt{:}\longrightarrow\large\textsf{Length of the rectangle = 7.5 cm}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ To FiNd :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Breadth of the rectangle = ?}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ FoRmUla :-}}

\large\textsf{                                                               }

\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Perimeter}}_{\large\textsf{( \; Rectangle \; )}} = \large\textsf{2 ( l + b )}$}}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTiOn :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Perimeter of the rectangle = 2 ( l + b )}

\qquad\tt{:}\longrightarrow\large\textsf{25 = 2 ( 7.5 + b )}

\qquad\tt{:}\longrightarrow\large\textsf{25 = 15 + 2b}

\qquad\tt{:}\longrightarrow\large\textsf{25 - 15 = 2b}

\qquad\tt{:}\longrightarrow\large\textsf{10 = 2b}

 \qquad\tt{:}\longrightarrow\large\sf  \xcancel\cfrac{10}{2}  \:  \:  \:  =  \:  \:  \: b

 \qquad\tt{:}\longrightarrow\large\boxed{ \sf \color{red} 5 \:  \:  cm\:  \:  \:  =  \:  \:  \: b}

\large\textsf{                                                               }

\qquad\tt{}\large\therefore\boxed{\large\textsf\textcolor{orange}{The breadth of the rectangle = 5cm}}

Similar questions