Math, asked by najish7852, 11 months ago

Perimeter of a rectangle is equal to the perimeter of right angled triangle of height 12

Answers

Answered by shaliniv
0

Answer:

Here we will discuss about the area and perimeter of the triangle.

● If a, b, c are the sides of the triangle, then the perimeter of triangle = (a + b + c) units.

● Area of the triangle = √(s(s - a) (s - h) (s - c))  

The semi-perimeter of the triangle, s = (a + b + c)/2

● In a triangle if 'b' is the base and h is the height of the triangle then

Area of triangle = 1/2 × base × height

Similarly,

area and perimeter of the triangle

                             1/2 × AC × BD                              1/2 × BC × AD

Step-by-step explanation:

Area of right angled triangle

● If a represents the side of an equilateral triangle, then its area = (a²√3)/4  

perimeter of an equilateral triangle

● Area of right angled triangle

A = 1/2 × BC × AB

  = 1/2 × b × h

area of right angled triangle

Worked-out examples on area and perimeter of the triangle:

1. Find the area and height of an equilateral triangle of side 12 cm. (√3 = 1.73).

Solution:  

Area of the triangle = √34 a² square units  

= √34 × 12 × 12  

= 36√3 cm²

= 36 × 1.732 cm²  

= 62.28 cm²

Height of the triangle = √32 a units

= √32 × 12 cm  

= 1.73 × 6 cm  

= 10.38 cm  

2. Find the area of right angled triangle whose hypotenuse is 15 cm and one of the sides is 12 cm.  

Solution:  

AB² = AC² - BC²  

      = 15² - 12²  

      = 225 - 144

       = 81

Therefore, AB = 9

Therefore, area of the triangle = ¹/₂ × base × height

                                                = ¹/₂ × 12 × 9  

                                                = 54 cm²

3. The base and height of the triangle are in the ratio 3 : 2. If the area of the triangle is 243 cm² find the base and height of the triangle.  

Solution:  

Let the common ratio be x  

Then height of triangle = 2x  

And the base of triangle = 3x

Area of triangle = 243 cm²

Area of triangle = 1/2 × b × h 243 = 1/2 × 3x × 2x  

⇒ 3x² = 243

⇒ x² = 243/3

⇒ x = √81

⇒ x = √(9 × 9)  

⇒ x = √9

Therefore, height of triangle = 2 × 9  

                                            = 18 cm  

Base of triangle = 3x  

                         = 3 × 9  

                         = 27 cm

4. Find the area of a triangle whose sides are 41 cm, 28 cm, 15 cm. Also, find the length of the altitude corresponding to the largest side of the triangle.  

Solution:  

Semi-perimeter of the triangle = (a + b + c)/2

                                                = (41 + 28 + 15)/2  

                                                = 84/2  

                                                = 42 cm

Therefore, area of the triangle = √(s(s - a) (s - b) (s - c))  

                                                = √(42 (42 - 41) (42 - 28) (42 - 15)) cm²

                                                = √(42 × 1 × 27 × 14) cm²

                                                = √(3 × 3 × 3 × 3 × 2 × 2 × 7 × 7) cm²

                                                = 3 × 3 × 2 × 7 cm²

                                                = 126 cm²

Now, area of triangle = 1/2 × b × h  

Therefore, h = 2A/b

                    = (2 × 126)/41

                    = 252/41

                    = 6.1 cm

Similar questions