Math, asked by Ishita1019, 3 months ago

Perimeter of a rectangular field is 1280m. The ratio between its side is 3:4 . Find its length.

Answers

Answered by Anonymous
8

Correct Question:-

  • Perimeter of a rectangular field is 1280 m. The ratio between its side is 3:2. Find its length.

Given:-

  • Perimeter of a rectangular field is 1280 m.
  • The ratio between its side is 3:2.

To find:-

  • Find its length.

Solution:-

Let,

  • the length be 3x.
  • the breadth be 2x.

→ Perimeter = 2(length + breadth)

→ 2(l + b) = 1280

→ 2(3x + 2x) = 1280

→ 2(5x) = 1280

→ 5x = 1280/2

→ 5x = 640

→ x = 640/5

x = 128

Therefore,

  • Length = 3x = 3× 128 = 384 m
  • Breadth = 2x = 2×128 = 256 m
Answered by Anonymous
7

Correct Question-:

  • Perimeter of a rectangular field is 1280m. The ratio of its length and breadth is 3:2 . Find its length and breadth.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{  Length \:and\:Breadth \:of\:Rectangular \:field \:are\:384m\:and\:256m\:respectively.}}}}}

Explanation-:

  • \mathrm { Given-:}

  • Perimeter of a rectangular field is 1280m.
  • The ratio of its length and breadth is 3:2 .

  • \mathrm { To\:Find-:}

  • The exact measure of length and breadth of Rectangular field.

\dag{\mathrm { Solution \:of\:Question \:-:}}

  • \mathrm { Let's \:Assume-:}

  • The length of Rectangular field be 3x .
  • The breadth of Rectangular field be 2x .

Then ,

  •  \frak{Dimensions \:\: -:} \begin{cases}  \sf{Length \:of\:Rectangular \:Field \:=\:\frak{3x\:m}}& \\\\ \sf{Breadth \:of\:Rectangular \:Field \:=\:\frak{2x\:m}}\end{cases} \\\\

  • \underbrace { \mathrm { Understanding \: the \: Concept \:-:}}

  • We have to find the length and breadth of Rectangular field ,

  • For this we have to put the assumed values in Formula of Perimeter of Rectangle,

  • From that we can find the exact measure of Length and Breadth.

As , We know that ,

  • \underline{\boxed{\star{\sf{\blue{  Perimeter \:of\:Rectangular \:plot\: = 2( Length+ Breadth).}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:Perimeter \:of\:Rectangular\:Field \:is\:= \frak{1280\:m}} & \\\\ \sf{Length \:of\:Rectangular \:Field \:=\:\frak{3x\:m}}& \\\\ \sf{Breadth \:of\:Rectangular \:Field \:=\:\frak{2x\:m}}\end{cases} \\\\

Now by putting known Values-:

  • \longrightarrow {\mathrm { 2 ( 3x + 2x ) = 1280 m}}

  • \longrightarrow {\mathrm { 2 ( 5x ) = 1280 m}}

  • \longrightarrow {\mathrm { 5x = \dfrac{1280}{2} }}

  • \longrightarrow {\mathrm { 5x = \dfrac{\cancel {1280}}{\cancel {2}} }}

  • \longrightarrow {\mathrm {  5x  = 640}}

  • \longrightarrow {\mathrm {  x  =\dfrac{ 640}{5}}}

  • \longrightarrow {\mathrm {  x  = 128}}

Therefore,

  • \boxed {\mathrm {  x  = 128}}

Now By Putting x = 128 ,

  •  \frak{Putting \:x=128\: -:} \begin{cases}  \sf{Length \:of\:Rectangular \:Field \:=\:\frak{3x\:=3 \times 128 =384 m}}& \\\\ \sf{Breadth \:of\:Rectangular \:Field \:=\:\frak{2x\:=2\times 128 =256 m}}\end{cases} \\\\

Hence ,

  • \underline{\boxed{\star{\sf{\blue{  Length \:and\:Breadth \:of\:Rectangular \:field \:are\:384m\:and\:256m\:respectively.}}}}}

_____________________________________________________

Similar questions